Чем похожи футбольный мяч и фуллерен. Углеродные наночастицы и нанотрубки. Кто же спасёт человека? Красота

Свойства… Но обо всём по порядку.

В начале — о шунгите.

Шунгит — это минерал черного цвета, содержащий 93-98% углерода и до 3-4% соединений водорода, кислорода, азота, серы, воды. В золе минерала содержится ванадий, молибден, никель, вольфрам, селен. Название минерал получил по поселку Шуньга в Карелии, где находятся его основные месторождения.

Шунгит образовался из органических донных отложений - сапропеля - примерно 600 млн лет назад, а по некоторым источникам - 2 млрд лет назад. Эти органические осадки (трупы рачков, водорослей и прочих улиток), прикрываемые сверху все новыми наслоениями, постепенно уплотнялись, обезвоживались и погружались в глубины земли. Под влиянием сжатия и высокой температуры шел процесс метаморфизации. В результате этого процесса образовался распыленный в минеральной матрице аморфный углерод в виде характерных именно для шунгита глобул-фуллеренов.

Теперь о фуллеренах

Что же такое, этот фуллерен, содержащийся в шунгите? Фуллерены — это одна из разновидностей углерода. Так, со школы мы помним, что углерод имеет несколько форм:

  • алмаз,
  • графит,
  • уголь.

Фуллерены — это просто ещё одна форма углерода. Отличается она тем, что молекулы фуллеренов представляют собой шары-глобулы из правильных многогранников, составленные из молекул того самого углерода:

Но чем же так полезны фуллерены?

Фуллерены используются в технике полупроводников, для разнообразных исследований (оптики, квантовой механики), фоторезистенции, в области сверхпроводников, в механике для изготовления веществ для уменьшения трения, в аккумуляторной технике, при синтезе алмазов, изготовлении фотобатарей и многих других отраслях. Из которых одна — для изготовления лекарств.

И опять же мы вернулись к нашему вопросу — чем же так полезны фуллерены ? Здесь можно обратиться к Григорию Андриевскому, работающему с группой учёных в Институте терапии Академии медицинских наук Украины именно над этим вопросом. В своих исследованиях учёный раскрыл, что к чему.

Так, фуллерены в шунгите находятся в особой форме — гидратированной. То есть, они соединены с водой и могут растворяться в воде. Соответственно, фуллерены могут вымываться из шунгита и образовывать раствор фуллеренов — единственную активную форму фуллеренов на сегодня.

Далее, водные растворы фуллеренов — это мощные антиоксиданты . То есть, они, подобно витаминам Е и С (и другим веществам) помогают организму справляться со свободными радикалами — веществами, которые образуются в организме при воспалительных процессах и очень агрессивно взаимодействуют с окружающими их веществами — разрушая необходимые организму структуры. Но, в отличие от витаминов, фуллерены не расходуются при нейтрализации свободных радикалов — и могут делать их безопасными, пока не будут выведены из организма естественным путём.

Соответственно, количества фуллеренов, эффективно работающие как антиоксиданты, могут находиться в организме в намного меньших количествах, чем витамины. По сравнению с ними

фуллерены могут работать в сверхмалых дозах.

Соответственно, используя водные растворы фуллеренов, можно снизить количество свободных радикалов в организме — и помочь телу справляться с негативными процессами. Что, собственно, и делает шунгитовая вода — тот самый водный раствор фуллеренов.

И очень важное дополнение от Григория Андриевского по поводу лечебных свойств фуллеренов из шунгита:

Пока шли только опыты на добровольцах, включая меня самого. Поэтому не следует подогревать ажиотаж и внушать несбыточные надежды больным. Да, у нас есть многообещающие результаты фундаментальных исследований, полученные в основном на животных и клеточных культурах. Но, пока препараты и методики не прошли проверки и апробации в установленном порядке, мы не имеем ни морального, ни иного права называть их лекарственными препаратами и лечебными методиками.

И, наконец, к шунгитовой воде

Шунгитовая вода — возвращаемся к ней. Существует два противоположных мнения о приготовлении и использовании шунгитовой воды.

Первое озвучено канд. хим. наук О. В. Мосином (Московская государственная академия тонкой химической технологии им. М. В. Ломоносова):

Вода, настоянная на шунгите , становится не просто чистой питьевой водой, но и молекулярно-коллоидным раствором гидратированных фуллеренов, которые относятся к новому поколению лекарственных и профилактических средств с многоплановым действием на организм.

Второе мнение о использовании шунгита озвучивает директор Института геологии Карельского научного центра РАН д. геол.-м. н. Владимир Щипцов:

То, что шунгит очищает воду, доказано, но лишь в том случае, если он входит в качестве составной части в специальные фильтры . Вода же, настоянная просто на куске минерала, может быть даже вредна - в результате химической реакции образуется, по сути, малоконцентрированный раствор кислоты.

Итак, чтобы приготовить шунгитовую воду — нужно настаивать воду на минерале или пропускать через специальные фильтры? Давайте углубимся в тему. И, поскольку шунгитовая вода — это водный раствор фуллеренов, то от них мы никуда не денемся.

Так, фуллерены растворяются в воде с большим трудом. Зато, если они растворены, то вокруг каждого шара-фуллерена образуется многослойная оболочка из правильно расположенных молекул воды, примерно в десять молекулярных слоев. Эту водяную, иначе говоря гидратную, оболочку вокруг молекулы фуллерена можно назвать структурированной водой .

По своим свойствам вода, окружающая молекулу фуллерена, существенно отличается от обычной. И очень похожа на связанную воду в клетках организма. Так, в живой клетке, по сути, очень мало обычной, знакомой нам свободной воды. Вся вода связана с окружающими её молекулами. И представляет собой что-то вроде желе. Механизм образования связанной воды в клетках похож на механизм образования водной оболочки вокруг молекулы фуллерена.

Таким образом, в растворе шунгитовой воды можно выделить выделяется два сорта воды:

  1. структурированная вода, окружающая молекулы фуллерена (как и молекулы органических веществ в клетках),
  2. и свободная вода.

При выпаривании растворов в первую очередь испаряется именно свободная вода. Такая же водная оболочка с пониженной температурой плавления образуется вокруг молекул ДНК, в растворах ферментов. Что придаёт им устойчивость как к замерзанию, так и к нагреву.

Итак, возвращаемся к двум разным способам приготовления шунгита — настаиванию и пропусканию через слой шунгита. Чем отличаются эти способы? Они отличаются временем контакта. То есть, временем, за которое фуллерены могут выйти из структуры шунгита и образовать водный раствор.

Как мы уже упоминали ранее, фуллерены могут работать в сверхмалых дозах . То есть, для образования действительно эффективного раствора фуллеренов достаточно простого пропускания воды через шунгит или не очень длительного настаивания воды на шунгите.

Естественно, интенсивность растворения фуллеренов из шунгита зависит от степени измельчённости гранул шунгита. Так, если у вас кусок камня весом в килограмм, то воду можно настаивать долго 🙂

Поскольку завершённых научных исследований с однозначными рекомендациями по использованию шунгита нет, то нет и точной закономерности — сколько времени настаивать (фильтровать) через гранулы какого размера шунгита для приготовления раствора фуллеренов нужной концентрации.

Соответственно, единственный выход на сегодня — экспериментировать с шунгитовой водой на себе.

И прислушиваться к своим ощущениям. И, естественно, изменять воздействие при ухудшении или улучшении самочувствия.

Пишите результаты ваших экспериментов!

В 1985 году была открыта молекула, состоящая из 60 атомов углерода, устроенная наподобие футбольного мяча, – фуллерен, названный так в честь инженера Ричарда Фуллера, прославившегося конструкциями именно такой формы. Помимо своей удивительно симметричной формы, эта молекула, являющаяся третьей (после алмаза и графита) аллотропной формой углерода, оказалась чем-то вроде философского камня алхимиков .

До последнего времени она не перестает удивлять ученых своей крайне низкой токсичностью (особенно по сравнению с чем-то похоже устроенными нанотрубками ) и другими удивительными свойствами . Механизмы взаимодействия фуллеренов с клетками пока не ясны, но результат поистине можно назвать волшебством .

Вот далеко не полный перечень тех свойств, которые заинтересовали медиков и биологов. Фуллерен и его производные можно использовать:

  • для защиты организма от радиации и ультрафиолетового излучения ;
  • для защиты от вирусов и бактерий ;
  • для защиты от аллергии . Так, в экспериментах in vivo введение производных фуллерена ингибирует анафилаксию у мышей, и при этом токсического эффекта не наблюдается;
  • как вещество, стимулирующее иммунитет ;
  • как мощный антиоксидант , поскольку он является активным акцептором радикалов. Антиоксидантная активность фуллерена сопоставима с действием антиоксидантов класса SkQ («ионов Скулачева») и в 100–1000 раз превышает действие обычных антиоксидантов, таких как витамин Е, бутилгидрокситолуол, β-каротин;
  • как лекарственные препараты для борьбы с раковыми заболеваниями ;
  • для ингибирования ангиогенеза ;
  • для защиты мозга от алкоголя ;
  • для стимуляции роста нервов;
  • для стимуляции процессов регенерации кожи. Так, фуллерен является важным компонентом косметических омолаживающих средств GRS и CEFINE;
  • для стимуляции роста волос ;
  • как лекарство с антиамилоидным действием .

Помимо этого, фуллерен может использоваться для доставки в клетку различных лекарственных веществ и невирусной доставки в клеточное ядро генетических векторов .

Казалось бы, куда еще расширять этот список, но недавно он пополнился еще одним, пожалуй, самым удивительным и непонятным, качеством фуллерена С60. При исследовании токсичности фуллерена С60, растворенного в оливковом масле, французские исследователи выяснили, что крысы, регулярно получающие раствор фуллерена С60, живут дольше, чем те, которым давали просто оливковое масло или обычную диету . (Краткий пересказ можно прочитать в статье «Оливковое масло с фуллеренами – эликсир молодости?» – ВМ.)

Растворение в масле резко повышает эффективность фуллерена С60, так как его большие агрегаты (16 и более молекул) не способны проникнуть внутрь клеток .

При этом продолжительность жизни увеличивалась не на какие-нибудь 20-30%, как в опытах с лучшими из «лекарств от старости» (такими как ресвератрол или рапамицин), а не менее чем в два раза ! Половина животных, получавших фуллерен, жили до 60 месяцев (самая старая крыса дожила до 5,5 лет). При этом в контрольной группе (с обычной диетой) продолжительность жизни 50% животных составляла 30 месяцев, а самые старые дожили лишь до 37 месяцев. Животные, получавшие оливковое масло без фуллерена, жили немного больше – 50% из них доживали до 40 месяцев, а самая старая крыса дожила до 58 месяцев.

Диаграмма выживаемости крыс, получавших: обычную диету (голубая линия), вдобавок к диете оливковое масло (красная) и оливковое масло с растворенным в нем фуллереном С60 (черная линия). Рисунок из .

Животворное действие фуллерена С60 авторы статьи приписывают его антиоксидантным свойствам. Однако не исключено, что оно может быть связано со способностью фуллерена С60 взаимодействовать с витамином А . Известно, что ретиноиды (к которым относится и витамин А) играют важную роль в экспрессии ключевых генов иммунной системы, и что локальный синтез ретиноидов, по всей видимости, играет ключевую роль в регуляции эмбриогенеза и регенерации .

К сожалению, эти опыты были поставлены на небольших группах животных и потому требуют тщательной проверки. Учитывая тот факт, что очищенный фуллерен С60, производимый в России, стоит всего около 1800 рублей за грамм, повторить эти опыты, уточнить дозировки и продолжительность «лечения» не так уж и сложно. Сложнее другое. Будет ли эта «терапия старости» так же эффективна для человека? Ведь люди – не крысы, и есть десятки примеров того, что препарат, очень эффективно действующий в экспериментах на мышах, оказывался совершенно бесполезным (если не вредным!), когда испытания переходили в клинику. Что ж – время покажет. Интересно было бы также сопоставить активность фуллерена С60 по продлению жизни с его многочисленными водорастворимыми аналогами, синтезированными в России в самое последнее время.

Написано по материалам оригинальной статьи .

Литература

  1. А.В. Елецкий, Б.М. Смирнов. (1993). Фуллерены. УФН 163 (№ 2), 33–60;
  2. Mori T. et al. (2006). Preclinical studies on safety of fullerene upon acute oral administration and evaluation for no mutagenesis. Toxicology 225, 48–54;
  3. Szwarc H, Moussa F. (2011). Toxicity of 60fullerene: confusion in the scientific literature. J. Nanosci. Lett. 1, 61–62;
  4. биомолекула: «Невидимая граница: где сталкиваются „нано“ и „био“»;
  5. Marega R., Giust D., Kremer A., Bonifazi D. (2012). Supramolecular Chemistry of Fullerenes and Carbon Nanotubes at Interfaces: Toward Applications. Supramolecular Chemistry of Fullerenes and Carbon Nanotubes (eds N. Martin and J.-F. Nierengarten), Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany;
  6. Пиотровский Л.Б. (2010). Наномедицина как часть нанотехнологий. Вестник РАМН 3, 41–46;
  7. Theriot C.A., Casey R.C., Moore V.C., Mitchell L., Reynolds J.O., Burgoyne M., et al. (2010). Dendrofullerene DF-1 provides radioprotection to radiosensitive mammalian cells. Radiat. Environ. Biophys. 49, 437–445;
  8. Andrievsky G.V., Bruskov V.I., Tykhomyrov A.A., Gudkov S.V. (2009). Peculiarities of the antioxidant and radioprotective effects of hydrated C60 fullerene nanostructures in vitro and in vivo. Free Radic. Biol. Med. 47, 786–793;
  9. Mashino T., Shimotohno K., Ikegami N., et al. (2005). Human immunodeficiency virus-reverse transcriptase inhibition and hepatitis C virus RNA-dependent RNA polymerase inhibition activities of fullerene derivatives. Bioorg. Med. Chem. Lett. 15, 1107–1109;
  10. Lu Z.S., Dai T.H., Huang L.Y., et al. (2010). Photodynamic therapy with a cationic functionalized fullerene rescues mice from fatal wound infections. Nanomedicine 5, 1525–1533;
  11. John J.R., Bateman H.R., Stover A., Gomez G., Norton S.K., Zhao W., et al. (2007). Fullerene nanomaterials inhibit the allergic response. J. Immunol. 179, 665–672;
  12. Xu Y.Y., Zhu J.D., Xiang K., Li Y.K., Sun R.H., Ma J., et al. (2011). Synthesis and immunomodulatory activity of 60fullerene-tuftsin conjugates. Biomaterials 32, 9940–9949;
  13. Gharbi N., Pressac M., Hadchouel M. et al. (2005). Fullerene is a powerful antioxidant in vivo with no acute or subacute toxicity. Nano Lett. 5, 2578–2585;
  14. Chen Z., Ma L., Liu Y., Chen C. (2012). Applications of Functionalized Fullerenes in Tumor Theranostics. Theranostics 2, 238–250;
  15. Jiao F., Liu Y., Qu Y. et al. (2010). Studies on anti-tumor and antimetastatic activities of fullerenol in a mouse breast cancer model. Carbon 48, 2231–2243;
  16. Meng H., Xing G.M., Sun B.Y., Zhao F., Lei H., Li W., et al. (2010). Potent angiogenesis inhibition by the particulate form of fullerene derivatives. ACS Nano, 4, 2773–2783;
  17. Tykhomyrov A.A., Nedzvetsky V.S., Klochkov V.K., Andrievsky G.V. (2008). Nanostructures of hydrated C60 fullerene (C60HyFn) protect rat brain against alcohol impact and attenuate behavioral impairments of alcoholized animals. Toxicology 246, 158–165;
  18. Григорьев В.В., Петрова Л.Н., Иванова Т.А., с соавт. и Бачурин С.О. (2011). Исследование нейропротекторного действия гибридных структур на основе фуллерена С60. Изв. РАН серия Биологическая 2, 163–170;
  19. Zhou Z.G., Lenk R., Dellinger A., MacFarland D., Kumar K., Wilson S.R., et al. (2009). Fullerene nanomaterials potentiate hair growth. Nanomed. Nanotechnol. Biol. Med. 5, 202–207;
  20. Bobylev A.G., Kornev A.B., Bobyleva L.G., Shpagina M.D., Fadeeva I.S., Fadeev R.S., et al. (2011). Fullerenolates: metallated polyhydroxylated fullerenes with potent antiamyloid activity. Org. Biomol. Chem. 9, 5714–5719;
  21. биомолекула: «Наномедицина будущего: трансдермальная доставка с использованием наночастиц»;
  22. Montellano A., Da Ros T., Bianco A., Prato M. (2011). Fullerene C(60) as a multifunctional system for drug and gene delivery. Nanoscale 3, 4035–4041;
  23. Кузнецова С.А., Орецкая Т.С. (2010). Нанотранспортные системы адресной доставки нуклеиновых кислот в клетки. Российские нанотехнологии 5 (№ 9–10), 40–52;
  24. Baati T., Bourasset F., Gharb N., et al. (2012) The prolongation of the lifespan of rats by repeated oral administration of 60fullerene. Biomaterials 33, 4936–4946;
  25. Пиотровский Л.Б., Еропкин М.Ю., Еропкина Е.М., Думпис М.А., Киселев О.И. (2007). Механизмы биологического действия фуллеренов – зависимость от агрегатного состояния. Психофармакология и биологическая наркология 7 (№ 2), 1548–1554;
  26. Moussa F., Roux S., Pressac M., Genin E., Hadchouel M., Trivin F., et al. (1998). In vivo reaction between 60fullerene and vitamin A in mouse liver. New J. Chem. 22, 989–992;
  27. Linney E., Donerly S., Mackey L., Dobbs-McAuliffe B. (2001). The negative side of retinoic acid receptors. Neurotoxicol Teratol. 33, 631–640;
  28. Gudas L.J. (2012). Emerging Roles for Retinoids in Regeneration and Differentiation in Normal and Disease States. Biochim Biophys Acta 1821, 213–221.

Портал «Вечная молодость»

Молекулярная форма углерода или аллотропная его модификация, фуллерен, - это длинный ряд атомных кластеров C n (n > 20), которые представляют собой выпуклые замкнутые многогранники, построенные из атомов углерода и имеющие пятиугольные или шестиугольные грани (здесь есть очень редкие исключения). Атомам углерода в незамещённых фуллеренах свойственно находиться в sp 2 -гибридном состоянии с координационным числом 3. Таким образом формируется сферическая сопряжённая ненасыщенная система согласно теории валентных связей.

Общее описание

Самая термодинамически устойчивая при нормальных условиях форма углерода - графит, который выглядит как стопка едва связанных друг с другом графеновых листов: плоские решётки, состоящие из шестиугольных ячеек, где на вершинах - атомы углерода. Каждый из них связан с тремя соседними атомами, а четвёртый валентный электрон образует пи-систему. Значит, фуллерен - это именно такая молекулярная форма, то есть картина sp 2 -гибридного состояния очевидна. Если ввести в графеновый лист геометрические дефекты, неизбежно образуется замкнутая структура. Например, такими дефектами служат пятичленные циклы (пятиугольные грани), точно так же распространённые наряду с шестиугольными в химии углерода.

Природа и технологии

Получение фуллеренов в чистом виде возможно путём искусственного синтеза. Эти соединения продолжают интенсивно изучать в разных странах, устанавливая условия, при которых происходит их образование, а также рассматривается структура фуллеренов и их свойства. Всё более ширится сфера их применения. Оказалось, что значительное количество фуллеренов содержится в саже, которая образуется на графитовых электродах в дуговом разряде. Ранее этого факта просто никто не видел.

Когда фуллерены были получены в условиях лаборатории, молекулы углерода начали обнаруживаться и в природе. В Карелии нашли их в образцах шунгитов, в Индии и США - в фурульгитах. Также много и часто встречаются молекулы углерода в метеоритах и отложениях на дне, которым не менее шестидесяти пяти миллионов лет. На Земле чистые фуллерены могут образовываться при разряде молнии и при сгорании природного газа. взятые над Средиземным морем, были изучены в 2011 году, и оказалось, что во всех взятых образцах - от Стамбула до Барселоны - присутствует фуллерен. Физические свойства этого вещества обуславливают самопроизвольное образование. Также огромные его количества обнаружены в космосе - и в газообразном состоянии, и в твёрдом виде.

Синтез

Первые опыты выделения фуллеренов происходили через конденсированные пары графита, которые получали при лазерном воздействии облучением твердых графитовых образцов. Удавалось получить только следы фуллеренов. Лишь в 1990 году химиками Хаффманом, Лэмбом и Кретчмером был разработан новый метод добычи фуллеренов в граммовых количествах. Он заключался в сжигании графитовых электродов электрической дугой в атмосфере гелия и при низком давлении. Происходила эрозия анода, и на стенках камеры появлялась сажа, содержащая фуллерены.

Далее сажу растворяли в толуоле или бензоле, а в полученном растворе выделялись граммы в чистом виде молекул С 70 и С 60 . Соотношение - 1:3. Кроме того, раствор содержал и два процента тяжёлых фуллеренов высшего порядка. Теперь дело было за малым: подбирать оптимальные параметры для испарения - состав атмосферы, давление, диаметр электродов, ток и так далее, чтобы достигнуть наибольшего выхода фуллеренов. Они составляли примерно до двенадцати процентов собственно материала анода. Именно поэтому и столь дорого фуллерены стоят.

Производство

Все попытки учёных экспериментаторов на первых порах были тщетными: производительные и дешёвые способы получения фуллеренов не находились. Ни сжигание в пламени углеводородов, ни химический синтез к успеху не привели. Метод электрической дуги оставался самым продуктивным, позволявшим получать около одного грамма фуллеренов в час. Фирма Mitsubishi наладила промышленное производство методом сжигания углеводородов, но их фуллерены не чисты - они содержат молекулы кислорода. И до сих пор остаётся неясным сам механизм образования данного вещества, потому что процессы горения дуги крайне неустойчивы с термодинамической точки зрения, и это очень сильно тормозит рассмотрение теории. Неопровержимы только факты о том, что фуллерен собирает отдельные атомы углерода, то есть фрагменты С 2 . Однако наглядная картина образования этого вещества так и не сформировалась.

Высокая стоимость фуллеренов определяется не только низким выходом при сжигании. Выделение, очистка, разделение фуллеренов разной массы из сажи - все эти процессы достаточно сложны. Особенно это касается разделения смеси на отдельные молекулярные фракции, которые проводятся посредством жидкостной хроматографии на колонках и с высоким давлением. На последнем этапе удаляются остатки растворителя из уже твёрдого фуллерена. Для этого образец выдерживается в условиях динамического вакуума при температуре до двухсот пятидесяти градусов. Но плюс в том, что во времена разработки фуллерена С 60 и получения его в уже макроколичествах органическая химия приросла самостоятельной ветвью - химией фуллеренов, которая стала невероятно популярной.

Польза

Производные фуллеренов применяются в различных областях техники. Плёнки и кристаллы фуллерена - полупроводники, обладающие при оптическом облучении фотопроводимостью. Кристаллы С 60 , если их легировать атомами щёлочных металлов, переходят в состояние сверхпроводимости. Растворы фуллерена имеют нелинейные оптические свойства, потому могут использоваться как основа оптических затворов, которые необходимы для защиты от интенсивного излучения. Также фуллерен используют в качестве катализатора для синтеза алмазов. Широко применяются фуллерены в биологии и медицине. Здесь работает три свойства данных молекул: определяющая мембранотропность липофильность, электронодефицит, дающий способность взаимодействия со свободными радикалами, а также способность передавать молекуле обычного кислорода их собственное возбуждённое состояние и превращать этот кислород в синглетный.

Подобные активные формы вещества атакуют биомолекулы: нуклеиновые кислоты, белки, липиды. Активные формы кислорода используют в фотодинамической терапии для лечения рака. В кровь пациента вводят фотосенсибилизаторы, генерирующие активные формы кислорода - собственно фуллерены или их производные. Кровоток в опухоли слабее, чем в здоровых тканях, а потому фотосенсибилизаторы накапливаются в ней, и после направленного облучения молекулы возбуждаются, генерируя активные формы кислорода. раковые клетки испытывают апоптоз, и опухоль разрушается. Плюс к этому - фуллерены имеют антиоксидантные свойства и улавливают активные формы кислорода.

Фуллерен понижает активность ВИЧ-интегразы, белка, который отвечает за встраивание вируса в ДНК, взаимодействуя с ним, изменяя конформацию и лишая его основной вредительской функции. Некоторые из производных фуллерена взаимодействуют непосредственно с ДНК и препятствуют действию рестиктаз.

Ещё о медицине

В 2007 году начали использоваться водорастворимые фуллерены для употребления их в качестве противоаллергических средств. Исследования проводились на человеческих клетках и крови, которые подвергались воздействию производных фуллерена - С60(NEt)x и С60(ОН)x. В экспериментах на живых организмах - мышах - результаты были положительными.

Уже сейчас это вещество используется как вектор доставки лекарства, поскольку вода с фуллеренами (вспомним гидрофобность С 60) проникает в мембрану клетки очень легко. Например, эритропоэтин - введённый непосредственно в кровь, в значительном количестве деградируется, а если использовать его вместе с фуллеренами, то концентрация возрастает более чем вдвое, и потому он попадает внутрь клетки.

Наиболее эффективный способ получения фуллеренов основан на термическом разложении графита. При умеренном нагревании графита разрывается связь между отдельными слоями графита, но не происходит разложения испаряемого материала на отдельные атомы. При этом испаряемый слой состоит из отдельных фрагментов, представляющих собой комбинацию шестиугольников. Из этих фрагментов и происходит построение молекулы С60 и других фуллеренов. Для разложения графита при получении фуллеренов используются резистивный и высокочастотный нагрев графитового электрода, сжигание углеводородов, лазерное облучение поверхности графита, испарение графита сфокусированным солнечным лучом. Эти процессы проводятся в буферном газе, в качестве которого обычно используется гелий. Чаще всего для получения фуллеренов применятся дуговой разряд с графитовыми электродами в гелиевой атмосфере. Основная роль гелия связана с охлаждением фрагментов, которые имеют высокую степень колебательного возбуждения, что препятствует их объединению в стабильные структуры. Оптимальное давление гелия находится в диапазоне 50-100 Торр.

Основа метода проста: между двумя графитовыми электродами зажигается электрическая дуга, в которой испаряется анод. На стенках реактора осаждается сажа, содержащая от 1 до 40 % (в зависимости от геометрических и технологических параметров) фуллеренов. Для экстракции фуллеренов из фуллеренсодержащей сажи, сепарации и очистки используются жидкостная экстракция и колоночная хроматография. На первой стадии сажа обрабатывается неполярным растворителем (толуол, ксилол, сероуглерод). Эффективность экстракции обеспечивается применением аппарата Сокслета или обработкой ультразвуком. Полученный раствор фуллеренов отделяется от осадка фильтрованием и центрифугированием, растворитель отгоняют или испаряют. Твердый осадок содержит смесь фуллеренов, в различной степени сольватированных растворителем. Разделение фуллеренов на отдельные соединения проводят методами колоночной жидкостной хроматографии или жидкостной хроматографии высокого давления. Полное удаление остатка растворителя из твердого образца фуллерена осуществляется путем выдерживания при температуре 150-250 °С в условиях динамического вакуума в течение нескольких часов. Дальнейшее повышение степени чистоты достигается при сублимации очищенных образцов

8. Перспективы практического использования фуллеренов и фуллеритов

Открытие фуллеренов уже привело к созданию новых разделов физики твердого тела и химии (стереохимии). Активно исследуется биологическая активность фуллеренов и их производных. Показано, что представители этого класса способны ингибировать различные ферменты, вызывать специфическое расщепление молекул ДНК, способствовать переносу электронов через биологические мембраны, активно участвовать в различных окислительно-восстановительных процессах в организме. Начаты работы по изучению метаболизма фуллеренов, особое внимание уделяется противовирусным свойствам. Показано, в частности, что некоторые производные фуллеренов способны ингибировать протеазу вируса СПИДа. Широко обсуждается идея создания противораковых медицинских препаратов на основе водорастворимых эндоэдральных соединений фуллеренов с радиоактивными изотопами. Но здесь мы коснемся в основном перспектив применения фуллереновых материалов в технике и электронике.

Возможность получения сверхтвердых материалов и алмазов. Большие надежды возлагаются на попытки использовать фулле-рен, имеющий частичную sp^3-гибридизацию, как исходное сырье, замещающее графит при синтезе алмазов, пригодных для технического использования. Японские исследователи, изучавшие воздействие давления на фуллерен в диапазоне 8- 53 ГПа, показали, что переход фуллерен-алмаз начинается при давлении 16 ГПа и температуре 380 К, что значительно ниже, чем

для перехода графит- алмаз. Была показана возможность получения

крупных (до 600-800 мкм) алмазов при температуре 1000 °С и давлениях до 2 ГПа. Выход больших алмазов при этом достигал 33 вес. %. Линии рамановского рассеяния при частоте 1331 см^-1 имели ширину 2 см^-1 что указывает на высокое качество полученных алмазов. Активно исследуется также возможность получения сверхтвердых полимеризованных давлением фуллеритовых фаз.

Фуллерены как прекурсоры для роста алмазных пленок и карбида кремния. Пленки широкозонных полупроводников, таких как алмаз и карбид кремния, перспективны для использования в высокотемпературной, высокоскоростной электронике и оптоэлектронике, включающей ультрафиолетовый диапазон. Стоимость таких приборов зависит от развития химических методов осаждения (CVD) широкозонных пленок и совместимости этих методов со стандартной кремниевой технологией. Основная проблема в выращивании алмазных пленок - это направить реакцию предпочтительно по пути образования фазы sp ^3, а не sp ^2. Представляется эффективным использование фуллеренов в двух направлениях: повышение скорости формирования алмазных центров зародышеобразования на подложке и использование в качестве подходящих «строительных блоков» для выращивания алмазов в газовой фазе. Показано, что в микроволновом разряде происходит фрагментация С60 на С2, которые являются подходящим материалам для роста алмазных кристаллов. «MER Corporation» получила алмазные пленки высокого качества со скоростью роста 0.6 мкм/ч, используя фуллерены как прекурсоры роста и зародышеобразования. Авторы предсказывают, что такая высокая скорость роста значительно снизит стоимость CVD-алмазов. Значительным преимуществом является и то, что фуллерены облегчают процессы согласования параметров решетки при гетероэпитаксии, что позволяет использовать в качестве подложек ИК-материалы.

Ныне существующие процессы получения карбида кремния требуют использования температур до 1500 °С, что плохо совместимо со стандартной кремниевой технологией. Но, используя фуллерены, карбид кремния удается получить путем осаждения пленки С60 на кремниевую подложку с дальнейшим отжигом при температуре не выше 800 - 900 °С со скоростью роста 0.01 нм/с на Si-подложке.

Фуллерены как материал для литографии. Благодаря способности полимеризоваться под действием лазерного или электронного луча и образовывать при этом нерастворимую в органических растворителях фазу перспективно их применение в качестве резиста для субмикронной литографии. Фуллереновые пленки при этом выдерживают значительный нагрев, не загрязняют подложку, допускают сухое проявление.

Фуллерены как новые материалы для нелинейной оптики. Фуллеренсодержащие материалы (растворы, полимеры, жидкие сильно нелинейных оптических свойств перспективны для применения в качестве оптических ограничителей (ослабителей) интенсивного лазерного излучения; фоторефрактивных сред для записи динамических голограмм; частотных преобразователей; устройств фазового сопряжения.

Наиболее изученной областью является создание оптических ограничителей мощности на основе растворов и твердых растворов С60. Эффект нелинейного ограничения пропускания начинается примерно с 0.2 - 0.5 Дж/см^2, уровень насыщенного оптического пропускания соответствует 0.1 - 0.12 Дж/см 2 . При увеличении концентрации в растворе уровень ограничения плотности энергии снижается. Например, при длине пути в образце 10 мм (коллимированный пучок) и концентрациях раствора С60 в толуоле 1*10^-4, 1.65*10^-4 и 3.3*10^-4 М насыщенное пропускание оптического ограничителя оказывалось равным 320, 165 и 45 мДж/см 2 соответственно. Показано, что на длине волны 532 нм при различной длительности импульса т (500 фс, 5 пс, 10 не) нелинейно-оптическое ограничение проявляется при плотности энергии 2, 9 и 60 мДж/см^2. При больших плотностях вводимой энергии (более 20 Дж/см^2) дополнительно к эффекту нелинейного насыщенного поглощения с возбужденного уровня наблюдается дефокусировка пучка в образце, связанная с нелинейным поглощением, повышением температуры образца и изменением показателя преломления в области прохождения пучка. Для высших фуллеренов граница спектров поглощения сдвигается в область больших длин волн, что позволяет получить оптическое ограничение на л = 1.064 мкм.

Для создания твердотельного оптического ограничителя существенной является возможность введения фуллеренов в твердотельную матрицу при сохранении молекулы как целого и образовании гомогенного твердого раствора. Необходим также подбор матрицы, обладающей высокой лучевой стойкостью, хорошей прозрачностью и высоким оптическим качеством. В качестве твердотельных матриц применяются полимеры и стеклообразные материалы. Сообщается об успешном приготовлении твердого раствора С60 в SiO 2 на основе использования золь-гель-технологии. Образцы имели оптическое ограничение на уровне 2-3 мДж/см^2 и порог разрушения более 1 Дж/сv^2. Описан также оптический ограничитель на полистирольной матрице и показано, что в этом случае эффект оптического ограничения в 5 раз лучше, чем для С60 в растворе. При введении фуллеренов в лазерные фосфатные стекла показано, что фуллерены С60, и С70 в стеклах не разрушаются и механическая прочность допированных фуллеренами стекол оказывается выше, чем чистых.

Интересным применением нелинейно-оптического ограничения мощности излучения является использование фуллеренов в резонаторе лазеров для подавления пичкового режима при самосинхронизации мод. Высокая спепень нелинейности среды с фуллеренами может быть использована в качестве бистабильного элемента для сжатия импульса в наносекундной области длительностей.

Наличие в электронной структуре фуллеренов пи -электронных систем приводит, как известно, к большой величине нелинейной восприимчивости, что предполагает возможность создания эффективных генераторов третьей оптической гармоники. Наличие ненулевых компонент тензора нелинейной восприимчивости х (3) является необходимым условием для осуществления процесса генерации третьей гармоники, но для его практического использования с эффективностью, составляющей десятки процентов, необходимо наличие фазового синхронизма в среде. Эффективная генерация

может быть получена в слоистых структурах с квазисинхронизмом взаимодействующих волн. Слои, содержащие фуллерен, должны иметь толщину, равную когерентной длине взаимодействия, а разделяющие их слои с практически нулевой кубичной восприимчивостью - толщину, обеспечивающую сдвиг фазы на пи между излучением основной частоты и третьей гармоники.

Фуллерены как новые полупроводниковые и наноконструкционные материалы. Фуллериты как полупроводники с запрещенной зоной порядка 2 эВ можно использовать для создания полевого транзистора, фотовольтаических приборов, солнечных батарей, и примеры такого использования есть. Однако они вряд ли могут соперничать по параметрам с обычными приборами с развитой технологией на основе Si или GaAs. Гораздо более перспективным является использование фуллереновой молекулы как готового наноразмерного объекта для создания приборов и устройств наноэлектроники на новых физических принципах.

Молекулу фуллерена, например, можно размещать на поверхности подложки заданным образом, используя сканирующий туннельный (СТМ) или атомный силовой (АСМ) микроскоп, и использовать это как способ записи информации. Для считывания информации используется сканирование поверхности тем же зондом. При этом 1 бит информации - это наличие или отсутствие молекулы диаметром 0.7 нм, что позволяет достичь рекордной плотности записи информации. Такие эксперименты проводятся на фирме «Bell». Интересны для перспективных устройств памяти и эндоэдральные комплексы редкоземельных элементов, таких как тербий, гадолиний, диспрозий, обладающих большими магнитными моментами. Фуллерен, внутри которого находится такой атом, должен обладать свойствами магнитного диполя, ориентацией которого можно управлять внешним магнитным полем. Эти комплексы (в виде субмонослойной пленки) могут служить основой магнитной запоминающей среды с плотностью записи до 10^12 бит/см^2 (для сравнения оптические диски позволяют достичь поверхностной плотности записи 10^8 бит/ см^2).

Рисунок 12 . Принципиальная схема одномолекулярного транзистора на молекуле С60

Были разработаны физические принципы создания аналога транзистора на одной молекуле фуллерена, который может служить усилителем наноамперного диапазона (рис. 12 ). Два точечных наноконтакта расположены на расстоянии порядка 1-5 нм по одну сторону молекулы С60. Один из электродов является истоком, другой играет роль стока. Третий электрод (сетка) представляет собой маленький пьезоэлектрический кристалл и подводится на ван-дер-ваальсово расстояние по другую сторону молекулы. Входной сигнал подается на пьезоэлемент (острие), деформирующий молекулу, расположенную между электродами - истоком и стоком, и модулирует проводимость интрамолекулярного перехода. Прозрачность молекулярного канала токопротекания зависит от степени размытия волновых функций металла в области фуллереновой молекулы. Простая модель этого транзисторного эффекта - это туннельный барьер, высота которого модулируется независимо от его ширины, т. е. молекула С60 используется как природный туннельный барьер. Предполагаемые преимущества такого элемента - малые размеры и очень короткое время пролета электронов в туннельном режиме по сравнению с баллистическим случаем, следовательно более высокое быстродействие активного элемента. Рассматривается возможность интеграции, т. е. создания более чем одного активного элемента на молекулу С60.

Углеродные наночастицы и нанотрубки

Вслед за открытием фуллеренов С60 и С70 при исследовании продуктов, получаемых при сгорании графита в электрической дуге или мощном лазерном луче, были обнаружены частицы, состоящие из атомов углерода, имеющие правильную форму и размеры от десятков до сотен нанометров и поэтому получившие название кроме фуллеренов еще и наночастиц.

Возникает вопрос, почему так долго не могли открыть фуллерены, получающиеся из такого распространенного материала, как графит? Существуют две основные причины: во-первых, ковалентная связь атомов углерода очень прочная: чтобы ее разорвать, необходимы температуры выше 4000°С; во-вторых, для их обнаружения требуется очень сложная аппаратура - просвечивающие электронные микроскопы с высоким разрешением. Как теперь известно, наночастицы могут иметь самые причудливые формы. Были представлены различные углеродные образования в виде известных форм. С практической точки зрения для наноэлектроники, которая приходит сейчас на смену микроэлектронике, наибольший интерес представляют нанотрубы. Эти углеродные образования были открыты в 1991 году японским ученым С. Иджима. Нанотрубы представляют собой конечные графитовые плоскости, свернутые в виде цилиндра, они могут быть с открытыми концами или с закрытыми. Эти образования интересны и с чисто научной точки зрения, как модель одномерных структур. Действительно, в настоящее время обнаружены однослойные нанотрубы диаметром 9 А (0,9 нм). На боковой поверхности атомы углерода, как и в графитовой плоскости, располагаются в узлах шестиугольников, но в чашках, которые закрывают цилиндры с торцов, могут существовать и пятиугольники и треугольники. Чаще всего нанотрубы формируются в виде коаксиальных цилиндров.

Основной трудностью при исследовании свойств нанотрубных образований является то, что в настоящее время их не удается получить в макроскопических количествах так, чтобы аксиальные оси труб были сонаправлены. Как уже отмечалось, нанотрубы малого диаметра служат прекрасной моделью для исследований особенностей одномерных структур. Можно ожидать, что нанотрубы, подобно графиту, хорошо проводят электрический ток и, возможно, являются сверхпроводниками. Исследования в этих направлениях - дело ближайшего будущего.

Физики и химики нашли фуллеренам множество применений: их используют при синтезе новых соединений в оптике и при производстве проводников. О биологических же свойствах фуллеренов долгое время поступали неоднозначные данные: биологи то объявляли их токсичными , то обнаруживали антиоксидантные свойства фуллеренов и предлагали использовать их в лечении таких серьезных заболеваний, как бронхиальная астма .

Крысы-долгожители

В 2012 году увидела свет публикация, которая привлекла внимание геронтологов - специалистов, работающих над проблемами старения. В этой работе Тарек Баати и соавторы * продемонстрировали впечатляющие результаты - крысы, которых кормили суспензией фуллеренов в оливковом масле, жили вдвое дольше обычных, и, к тому же, демонстрировали повышенную устойчивость к действию токсических факторов (таких как четыреххлористый углерод). Токсичность этого соединения обусловлена его способностью генерировать активные формы кислорода (АФК) , а значит, биологические эффекты фуллеренов, скорее всего, можно объяснить их антиоксидантными свойствами (способностью «перехватывать» и дезактивировать АФК).

* - Подробно об этом «биомолекула» уже рассказывала: « » . - Ред.

Связь активных форм кислорода с процессами, происходящими при старении, в настоящее время уже практически не подвергается сомнению. С 60-х годов ХХ века, когда была сформулирована свободнорадикальная теория старения , и до настоящего времени объем данных, подтверждающих такую точку зрения, только накапливается. Однако до сих пор ни один антиоксидант - ни природный, ни синтетический - не давал столь поразительного увеличения продолжительности жизни экспериментальных животных, как в опытах Баати и коллег. Даже специально сконструированные коллективом под руководством академика Скулачева антиоксиданты «адресного действия» - так называемые «ионы Скулачева », или соединения ряда SkQ, - демонстрировали менее значительные эффекты .

Эти вещества представляют собой липофильные положительно заряженные молекулы с присоединенным антиоксидантным «хвостом», которые благодаря своей структуре способны накапливаться в митохондриях (именно в этих органоидах эукариотических клеток происходит генерация активных форм кислорода). Однако соединения ряда SkQ продлевали жизнь подопытных мышей в среднем всего на 30%.

Рисунок 2. Слева - мышь, старение которой замедлено благодаря приему «ионов Скулачева», справа - мышь из контрольной группы .

Почему же фуллерены оказались столь эффективными в борьбе со старением?

Задавшись этим вопросом, мы стали рассматривать возможность существования дополнительного механизма биологического действия фуллеренов - кроме уже известного антиоксидантного. Подсказка обнаружилась при изучении одного из соединений ряда SkQ - SkQR1, содержащего остаток родамина. Это соединение относится к группе протонофоров - молекул, способных переносить протоны из межмембранного пространства через мембрану в матрикс митохондрии, снижая, таким образом, трансмембранный потенциал (Δψ). Как известно, именно этот потенциал, существующий благодаря разнице в содержании протонов по разные стороны мембраны, и обеспечивает выработку энергии в клетке. Однако он же и является источником генерации АФК. В сущности, активные формы кислорода здесь сродни «токсическим отходам» при производстве энергии. Хотя они имеют и ряд полезных функций , в основном АФК - источник повреждения ДНК, липидов и многих внутриклеточных структур.

Рисунок 3. Схема строения митохондрии (слева ), перенос протонов органическими кислотами - «мягкими разобщителями» (в центре ) - и динитрофенол - самый известный из «разобщителей» (справа ).

Есть сведения, что некоторое снижение митохондриального трансмембранного потенциала может быть полезным для клеток . Снижение его всего на 10% приводит к уменьшению продукции АФК в 10 раз ! Существуют так называемые «мягкие разобщители», повышающие протонную проводимость мембран, в результате чего происходит «разобщение» дыхания и фосфорилирования АТФ .

Пожалуй, самый известный «разобщитель» - DNF, или 2,4-динитрофенол (рис. 3). В 30-е годы ХХ века им очень активно пользовались при лечении ожирения. Собственно, динитрофенол - первый «жиросжигатель», использовавшийся в официальной медицине. Под его действием клетка переключается на альтернативный путь метаболизма, запуская «сжигание» жиров, а получаемая клеткой энергия не запасается в АТФ, как обычно, а излучается в виде тепла.

Поиск легких способов похудения будет актуален всегда, пока представители Homo Sapiens будут беспокоиться о своем внешнем виде; однако для нашего исследования более интересен тот факт, что подобные «мягкие разобщители» снижают выработку АФК и в небольших дозах могут способствовать продлению жизни .

Возникает вопрос - а могут ли фуллерены, кроме антиоксидантных свойств, проявлять еще и свойства «переносчиков» протонов, действуя, таким образом, сразу с двух сторон? Ведь шарообразная молекула фуллерена - полая изнутри, а значит, в ней вполне могут уместиться небольшие частицы - такие как протоны.

Моделирование in silico : что сделали физики

Для проверки этой гипотезы коллективом НОЦ «Наноразмерная структура вещества» были выполнены сложные расчеты. Как и в истории с открытием фуллерена, в нашем исследовании компьютерное моделирование предшествовало экспериментам. Моделирование возможности проникновения протона в фуллерен и распределения заряда в такой системе производилось на основе теории функционала плотности (DFT). Это широко используемый инструмент квантово-химических расчетов, позволяющий вычислять свойства молекул с высокой точностью.

При моделировании один или несколько протонов помещали вне фуллерена, а затем производился расчет наиболее оптимальной конфигурации - такой, при которой полная энергия системы будет минимальной. Результаты расчетов показали: протоны могут проникать внутрь фуллерена! Оказалось, внутри молекулы C 60 может накапливаться до шести протонов одновременно, а вот седьмой и последующие уже не смогут проникнуть внутрь и будут отталкиваться - дело в том, что «заряженный» протонами фуллерен приобретает положительный заряд (а, как известно, одноименно заряженные частицы отталкиваются).

Рисунок 4. Распределение положительного заряда внутри системы «фуллерен+протоны». Слева направо: два, четыре или шесть протонов внутри фуллерена. Цветом обозначено распределение заряда: от нейтрального (красный ) до слабоположительного (синий ).

Происходит это потому, что проникающие внутрь фуллеренового «шарика» протоны оттягивают на себя электронные облака атомов углерода, что приводит к перераспределению заряда в системе «протоны+фуллерен». Чем больше протонов проникает внутрь, тем сильнее положительный заряд на поверхности фуллерена, тогда как протоны, напротив, все сильнее приближаются к нейтральным значениям. Эту закономерность можно проследить и на рисунке 4: когда количество протонов внутри сферы превышает 4, они становятся нейтральными (желто-оранжевый цвет), ну а поверхность фуллерена всё сильнее «синеет».

Вначале расчеты были выполнены только в системе «фуллерен+протоны» (без учета влияния других молекул). Но ведь в клетке фуллерен находится не в вакууме, а в водной среде, заполненной множеством соединений разной степени сложности. Поэтому на следующем этапе моделирования физики добавили к системе 47 молекул воды, окружающих фуллерен, и проверили, не повлияет ли их присутствие на взаимодействие с протонами. Однако и в присутствии воды модель действовала успешно.

Биологи подтверждают гипотезу?

Известие о том, что фуллерены могут адсорбировать протоны, да еще и приобретают при этом положительный заряд, вдохновило биологов. Похоже, что эти уникальные молекулы и вправду действуют сразу несколькими путями: инактивируют активные формы кислорода (в частности, гидроксильные радикалы, присоединяя их по многочисленным двойным связям ), адресно накапливаются в митохондриях благодаря своим липофильным свойствам и приобретенному положительному заряду, и, вдобавок ко всему, снижают трансмембранный потенциал, перенося протоны внутрь митохондрий, подобно другим «мягким разобщителям» дыхания и окислительного фосфорилирования.

Для изучения антиоксидантных свойств фуллеренов мы использовали систему экспресс-тестов на основе биолюминесцентных бактериальных биосенсоров. Биосенсоры в данном случае - генетически-модифицированные бактерии, способные улавливать повышение внутриклеточной генерации АФК и «сигнализировать» об этом исследователям. При создании биосенсоров в генóм одного из безвредных штаммов кишечной палочки Escherichia coli вводится искусственная конструкция, состоящая из генов люминесценции (свечения), поставленных под контроль специфических промоторов - регуляторных элементов, «включающихся» при повышении внутриклеточной генерации активных форм кислорода, или же при действии иных стресс-факторов - например, при повреждении ДНК. Стоит начать действовать на клетку таким стресс-фактором - бактерия начинает светиться, и по уровню этого свечения можно с достаточной точностью определить уровень повреждений.

Рисунок 5. Светящиеся бактерии на чашке Петри (слева ) и принцип действия биосенсоров (справа ).

Такие модифицированные штаммы разрабатываются в ГосНИИ Генетики и широко применяются в генетической токсикологии при изучении механизмов действия излучений и окислительного стресса , действия антиоксидантов (в частности, SkQ1 ), а также для поиска новых перспективных антиоксидантов среди синтезируемых химиками веществ .

В нашем случае использование именно бактериальной модели обусловлено следующим: бактерии, как известно, относятся к прокариотам, и клетки их устроены проще, чем эукариотические. Процессы, происходящие в мембране митохондрий эукариот, у прокариот реализуются прямо в клеточной мембране; в этом смысле бактерии - «сами себе митохондрии». (Удивительное сходство строения этих органелл с бактериями даже послужило в свое время основой для так называемой симбиотической теории происхождения эукариот .) Следовательно, для изучения процессов, происходящих в митохондриях, подобная модель вполне подходит.

Первые же результаты показали, что водная суспензия фуллерена C 60 , для более эффективного растворения обработанная ультразвуком, при добавлении к культуре биосенсоров увеличивала их устойчивость к повреждению ДНК активными формами кислорода. Уровень таких повреждений в опыте был на 50–60% ниже, чем в контроле.

Кроме того, было зафиксировано снижение уровня спонтанной продукции супероксид-анион-радикала в клетках SoxS-lux штамма при добавлении суспензии C 60 . Особенностью этого штамма как раз и является связь уровня его свечения с количеством супероксид-анион-радикала. Именно такого эффекта следует ожидать от соединения, действующего по принципу «мягких разобщителей» - если снижается трансмембранный потенциал, то и АФК (в частности, супероксид) будут вырабатываться в меньших количествах.

Полученные результаты, конечно, весьма предварительны, и работы еще продолжаются, именно поэтому в подзаголовке данного раздела и стоит вопросительный знак. Время покажет, сможем ли мы со временем заменить его на уверенный восклицательный. Ясно одно - в ближайшее время фуллерены неизбежно окажутся в фокусе внимания научных коллективов, изучающих проблемы старения и занимающихся поиском геропротекторов - веществ, замедляющих старение. И кто знает, не станут ли эти крохотные «шарики» надеждой на продление столь короткой пока человеческой жизни?

Работа проводилась в лаборатории экспериментального мутагенеза и лаборатории промышленных микроорганизмов НИИ биологии ЮФУ, а также в НОЦ «Наноразмерная структура вещества», ЮФУ, под руководством проф. А.В. Солдатова. Основные результаты моделирования системы «фуллерен+протоны» и биологические эффекты описаны, соответственно, в работах:

  1. Chistyakov V.A., Smirnova Yu.O., Prazdnova E.V., Soldatov A.V. (2013). Possible Mechanisms of Fullerene C60 Antioxidant Action . Biomed. Res. Int. 2013, 821498 и
  2. Prazdnova E.V., Chistyakov V.A., Smirnova Yu.O., Soldatov A.V., Alperovich I.G. (2013). Possible Mechanisms of Fullerene C60 Antioxidant Action. In: II German-Russian Interdisciplinary Workshop «Nanodesign: Physics, Chemistry and Computer modeling». Rostov-on-Don, 2013, 23.

Литература

  1. Соколов В. И., Станкевич И. В. (1993). Фуллерены - новые аллотропные формы углерода: структура, электронное строение и химические свойства. Успехи химии 62б, 455;
  2. Buseck P.R., Tsipursky S.J., Hettich R. (1992). Fullerenes from the Geological Environment . Science 257, 215–217; ;
  3. Око планет: «В космосе впервые обнаружен фуллерен »;
  4. Андриевский Г.В., Клочков В.К., Деревянченко Л.И. Токсична ли молекула фуллерена С 60 ? Или к вопросу: «Какой свет будет дан фуллереновым нанотехнологиям - Красный или все-таки зеленый?» . Электронный журнал «Вся медицина в Интернете!»;
  5. Ширинкин С.В., Чурносов М.И., Андриевский Г.В., Васильченко Л.В. (2009). Перспективы использования фуллеренов в качестве антиоксидантов в патогенетической терапии бронхиальной астмы. Клиническая медицина № 5 (2009), 56–58 ;
  6. Baati T., Bourasset F., Gharb N., et al. (2012) . Biochemistry (Moscow) 73, 1329–1342; ;et al. (2009). Peculiarities of the antioxidant and radioprotective effects of hydrated C 60 fullerene nanostructures in vitro and in vivo . Free Radic. Biol. Med. 47, 786–793; ;
  7. Xiao Y., Wiesner M.R. (2012). Characterization of surface hydrophobicity of engineered nanoparticles . J. Hazard. Mat. 215, 146–151; ;
  8. Zavilgelsky G.B., Kotova V.Y., Manukhov I.V. (2007). Action of 1,1-dimethylhydrazine on bacterial cells is determined by hydrogen peroxide . Mutat. Res. 634, 172–176; ;
  9. Празднова Е.В., Севрюков А.В., Новикова Е.В. (2011). Детекция сырой нефти при помощи бактериальных Lux-биосенсоров. Известия ВУЗов. Северо-Кавказский регион. Естественные науки № 4 (2011), 80–83; ;
  10. Празднова Е.В., Чистяков В.А., Сазыкина М.А., Сазыкин И.С., Кхатаб З.С. (2012). Перекись водорода и генотоксичность ультрафиолетового излучения с длиной волны 300–400 нм. Известия ВУЗов. Северо-Кавказский регион. Естественные науки № 1 (2012), 85–87; ;
  11. Чистяков В.А., Празднова Е.В., Гутникова Л.В., Сазыкина М.А., Сазыкин И.С. (2012). Супероксидустраняющая активность производного пластохинона - 10-(6’-пластохинонил) децилтрифенилфосфония (SkQ1). Биохимия 77, 932–935; ;
  12. Олудина Ю.Н и др. (2013). Синтез модифицированных пространственно-затрудненных фенолов и исследование их способности защищать ДНК бактерий от повреждения ультрафиолетом B. Химико-фармацевтический журнал (в печати);
  13. Кулаев И.С. (1998). Происхождение эукариотических клеток . Соросовский Образовательный Журнал № 5 (1998), 17–22. .