Что называют количеством теплоты. Как рассчитать количество теплоты, тепловой эффект и теплоту образования

Внутренняя энергия тела зависит от его температуры и внешних условий - объёма и т. д. Если внешние условия остаются неизменными, т. е. объём и другие параметры постоянны, то внутренняя энергия тела зависит только от его температуры.

Изменить внутреннюю энергию тела можно, не только нагревая его в пламени или совершая над ним механическую работу (без изменения положения тела, например, работа силы трения), но и приводя его в контакт с другим телом, имеющим температуру, отличную от температуры данного тела, т. е. посредством теплопередачи.

Количество внутренней энергии, которое тело приобретает или теряет в процессе теплопередачи, и называется «количеством теплоты». Количество теплоты принято обозначать буквой `Q`. Если внутренняя энергия тела в процессе теплопередачи увеличивается, то теплоте приписывают знак плюс, и говорят, что телу сообщили теплоту `Q`. При уменьшении внутренней энергии в процессе теплопередачи теплота считается отрицательной, и говорят, что от тела отняли (или отвели) количество теплоты `Q`.

Количество теплоты можно измерять в тех же единицах, в которых измеряется и механическая энергия. В системе СИ - это `1` джоуль . Существует и другая единица измерения теплоты - калория. Калория - это количество теплоты, необходимое для нагревания `1` г воды на `1^@ bb"C"`. Соотношение между этими единицами было установлено Джоулем: `1` кал `= 4,18` Дж. Это означает, что за счёт работы в `4,18` кДж температура `1` килограмма воды повысится на `1` градус.

Количество теплоты, необходимое для нагревания тела на `1^@ bb"C"`, называется теплоёмкостью тела. Теплоёмкость тела обозначается буквой `C`. Если телу сообщили небольшое количество теплоты `Delta Q`, а температура тела изменилась на `Delta t` градусов, то

`Q=C*Deltat=C*(t_2 - t_1)=c*m*(t_2 - t_1)`. (1.3)

Если тело окружить оболочкой, плохо проводящей тепло, то температура тела, если оно предоставлено самому себе, будет оставаться в течение длительного времени практически постоянной. Таких идеальных оболочек в природе, конечно, не существует, но можно создать оболочки, которые по своим свойствам приближаются к таковым.

Примерами могут служить обшивка космических кораблей, сосуды Дьюара, применяемые в физике и технике. Сосуд Дьюара представляет собой стеклянный или металлический баллон с двойными зеркальными стенками, между которыми создан высокий вакуум. Стеклянная колба домашнего термоса тоже является сосудом Дьюара.

Теплоизолирующей является оболочка калориметра - прибора, позволяющего измерять количество теплоты. Калориметр представляет собой большой тонкостенный стакан, поставленный на кусочки пробки внутрь другого большого стакана так, чтобы между стенками оставался слой воздуха, и закрытый сверху теплонепроводящей крышкой.

Если в калориметре привести в тепловой контакт два или несколько тел, имеющих различные температуры, и подождать, то через некоторое время внутри калориметра установится тепловое равновесие. В процессе перехода в тепловое равновесие одни тела будут отдавать тепло (суммарное количество теплоты `Q_(sf"отд")`), другие будут получать тепло (суммарное количество теплоты `Q_(sf"пол")`). А так как калориметр и содержащиеся в нём тела не обмениваются теплом с окружающим пространством, а только между собой, то можно записать соотношение, называемое также уравнением теплового баланса :

В ряде тепловых процессов тепло может поглощаться или выделяться телом без изменения его температуры. Такие тепловые процессы имеют место при изменении агрегатного состояния вещества - плавлении, кристаллизации, испарении, конденсации и кипении. Коротко остановимся на основных характеристиках этих процессов.

Плавление - процесс превращения кристаллического твёрдого тела в жидкость. Процесс плавления происходит при постоянной температуре, тепло при этом поглощается.

Удельная теплота плавления `lambda` равна количеству теплоты, необходимому для того, чтобы расплавить `1` кг кристаллического вещества, взятого при температуре плавления. Количество теплоты `Q_(sf"пл")`, которое потребуется для перевода твёрдого тела массы `m` при температуре плавления в жидкое состояние, равно

Поскольку температура плавления остаётся постоянной, то количество теплоты, сообщаемое телу, идёт на увеличение потенциальной энергии взаимодействия молекул, при этом происходит разрушение кристаллической решётки.

Процесс кристаллизации - это процесс, обратный процессу плавления. При кристаллизации жидкость превращается в твёрдое тело и выделяется количество теплоты, также определяемое формулой (1.5).

Испарение - это процесс превращения жидкости в пар. Испарение происходит с открытой поверхности жидкости. В процессе испарения жидкость покидают самые быстрые молекулы, т. е. молекулы, способные преодолеть силы притяжения со стороны молекул жидкости. Вследствие этого, если жидкость теплоизолирована, то в процессе испарения она охлаждается.

Удельная теплота парообразования `L` равна количеству теплоты, необходимому для того, чтобы превратить в пар `1` кг жидкости. Количество теплоты `Q_(sf"исп")`, которое потребуется для перевода в парообразное состояние жидкость массой `m` равно

`Q_(sf"исп") =L*m`. (1.6)

Конденсация - процесс, обратный процессу испарения. При конденсации пар переходит в жидкость. При этом выделяется тепло. Количество теплоты, выделяющейся при конденсации пара, определяется по формуле (1.6).

Кипение - процесс, при котором давление насыщенных паров жидкости равно атмосферному давлению, поэтому испарение происходит не только с поверхности, но и по всему объёму (в жидкости всегда имеются пузырьки воздуха, при кипении давление паров в них достигает атмосферного, и пузырьки поднимаются вверх).

Как мы уже знаем, внутренняя энергия тела может изменяться как при совершении работы, так и при помощи теплопередачи (не совершая работу). Главное различие между работой и количеством теплоты заключается в том, что работа определяет процесс преобразования внутренней энергии системы, который сопровождается трансформацией энергии из одного вида в другой.

В том случае, если изменение внутренней энергии протекает с помощью теплопередачи , переход энергии из одного тела в другое осуществляется за счет теплопроводности , излучения, либо конвекции .

Энергия, которую тело теряет или получает во время теплопередачи, называется количеством теплоты.

При вычислении количества теплоты, необходимо знать, какие величины влияют на него.

От двух одинаковых горелок будем нагревать два сосуда. В одном сосуде 1 кг воды, в другом – 2 кг. Температура воды в двух сосудах изначально одинакова. Мы можем видеть, что за одно и тоже время вода в одном из сосудов нагревается быстрее, хотя оба сосуда получают равное количество теплоты.

Таким образом, делаем вывод: чем больше масса данного тела, тем большее количество теплоты следует затратить, для того чтобы понизить, или повысить его температуру на такое же количество градусов.

Когда тело остывает, оно отдает соседним предметам тем большее количество теплоты, чем больше его масса.

Мы все знаем, что если нужно нагреть полный чайник воды до температуры 50°C, мы затратим меньше времени на это действие, чем для нагревания чайника с тем же объемом воды, но только до 100 °C. В случае номер один воде будет отдано меньшее количество теплоты, нежели во втором.

Таким образом, количество теплоты, требуемое для нагревания, напрямую зависит от того, на сколько градусов сможет нагреться тело. Можно сделать вывод: количество теплоты напрямую зависит от разности температур тела.

Но возможно ли определить количество теплоты, требуемой не для нагревания воды, а какого-нибудь другого вещества, допустим, масла, свинца или железа.

Наполним один сосуд водой, а другой наполним растительным маслом. Массы воды и масла равные. Оба сосуда будем равномерно подогревать на одинаковых горелках. Начнем опыт при равной начальной температуре растительного масла и воды. Через пять минут, измерив температуры нагревшихся масла и воды, мы заметим, что температура масла намного выше температуры воды, хотя обе жидкости получали одинаковое количество тепла.

Напрашивается очевидный вывод: при нагревании равных масс масла и воды при одинаковой температуре нужно разное количество теплоты.

И мы тут же делаем еще одни вывод: количество теплоты, которое требуется для нагревания тела, напрямую зависит от вещества, из которого состоит само тело (рода вещества).

Таким образом, количество теплоты, нужное для нагревания тела (либо выделяемое при остывании), напрямую зависит от массы данного тела, вариативности его температуры, а также рода вещества.

Количество теплоты обозначают символом Q. Как и другие различные виды энергии, количество теплоты измеряется в джоулях (Дж) либо в килоджоулях (кДж).

1 кДж = 1000 Дж

Однако история показывает, что ученые стали измерять количество теплоты задолго того, как в физике появилось такое понятие как энергия. В то время, была выведена специальная единица для измерения количества теплоты – калория (кал) либо килокалория (ккал). Слово имеет латинские корни, калор – жара.

1 ккал = 1000 кал

Калория – это то количество теплоты, которое нужно для нагревания 1 г воды на 1°C

1 кал = 4,19 Дж ≈ 4,2 Дж

1 ккал = 4190 Дж ≈ 4200 Дж ≈ 4,2 кДж

Остались вопросы? Не знаете, как сделать домашнее задание?
Чтобы получить помощь репетитора – .
Первый урок – бесплатно!

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

В фокусе внимания нашей статьи - количество теплоты. Мы рассмотрим понятие внутренней энергии, которая трансформируется при изменении этой величины. А также покажем некоторые примеры применения расчетов в человеческой деятельности.

Теплота

С любым словом родного языка у каждого человека есть свои ассоциации. Они определяются личным опытом и иррациональными чувствами. Что обычно представляется при слове «теплота»? Мягкое одеяло, работающая батарея центрального отопления зимой, первый солнечный свет весной, кот. Или взгляд матери, утешительное слово друга, вовремя проявленное внимание.

Физики подразумевают под этим совершенно конкретный термин. И очень важный, особенно в некоторых разделах этой сложной, но увлекательной науки.

Термодинамика

Рассматривать количество теплоты в отрыве от простейших процессов, на которые опирается закон сохранения энергии, не стоит - ничего не будет понятно. Поэтому для начала напомним их читателям.

Термодинамика рассматривает любую вещь или объект как соединение очень большого количества элементарных частей - атомов, ионов, молекул. Ее уравнения описывают любое изменение коллективного состояния системы как целого и как части целого при изменении макропараметров. Под последними понимаются температура (обозначается как Т), давление (Р), концентрация компонентов (как правило, С).

Внутренняя энергия

Внутренняя энергия - довольно сложный термин, в смысле которого стоит разобраться прежде, чем говорить о количестве теплоты. Он обозначает ту энергию, которая изменяется при увеличении или уменьшении значения макропараметров объекта и не зависит от системы отсчета. Является частью общей энергии. Совпадает с ней в условиях, когда центр масс исследуемой вещи покоится (то есть отсутствует кинетическая составляющая).

Когда человек чувствует, что некоторый объект (скажем, велосипед) нагрелся или охладился, это показывает, что все молекулы и атомы, составляющие данную систему, испытали изменение внутренней энергии. Однако неизменность температуры не означает сохранение этого показателя.

Работа и теплота

Внутренняя энергия любой термодинамической системы может преобразоваться двумя способами:

  • посредством совершения над ней работы;
  • при теплообмене с окружающей средой.

Формула этого процесса выглядит так:

dU=Q-А, где U - внутренняя энергия, Q - теплота, А - работа.

Пусть читатель не обольщается простотой выражения. Перестановка показывает, что Q=dU+А, однако введение энтропии (S) приводит формулу к виду dQ=dSxT.

Так как в данном случае уравнение принимает вид дифференциального, то и первое выражение требует того же. Далее, в зависимости от сил, действующих в исследуемом объекте, и параметра, который вычисляется, выводится необходимое соотношение.

Возьмем в качестве примера термодинамической системы металлический шарик. Если на него надавить, подбросить вверх, уронить в глубокий колодец, то это значит совершить над ним работу. Чисто внешне все эти безобидные действия шарику никакого вреда не причинят, но внутренняя энергия его изменится, хоть и очень ненамного.

Второй способ - это теплообмен. Теперь подходим к главной цели данной статьи: описанию того, что такое количество теплоты. Это такое изменение внутренней энергии термодинамической системы, которое происходит при теплообмене (смотрите формулу выше). Оно измеряется в джоулях или калориях. Очевидно, что если шарик подержать над зажигалкой, на солнце, или просто в теплой руке, то он нагреется. А дальше можно по изменению температуры найти количество теплоты, которое ему было при этом сообщено.

Почему газ - лучший пример изменения внутренней энергии, и почему из-за этого школьники не любят физику

Выше мы описывали изменения термодинамических параметров металлического шарика. Они без специальных приборов не очень заметны, и читателю остается поверить на слово о происходящих с объектом процессах. Другое дело, если система - газ. Надавите на него - это будет видно, нагрейте - поднимется давление, опустите под землю - и это можно с легкостью зафиксировать. Поэтому в учебниках чаще всего в качестве наглядной термодинамической системы берут именно газ.

Но, увы, в современном образовании реальным опытам уделяется не так много внимания. Ученый, который пишет методическое пособие, отлично понимает, о чем идет речь. Ему кажется, что на примере молекул газа все термодинамические параметры будут нужным образом продемонстрированы. Но ученику, который только открывает для себя этот мир, скучно слушать про идеальную колбу с теоретическим поршнем. Если бы в школе существовали настоящие исследовательские лаборатории и на работу в них выделялись часы, все было бы по-другому. Пока, к сожалению, опыты только на бумаге. И, скорее всего, именно это становится причиной того, что люди считают данный раздел физики чем-то чисто теоретическим, далеким от жизни и ненужным.

Поэтому мы решили в качестве примера привести уже упоминаемый выше велосипед. Человек давит на педали - совершает над ними работу. Помимо сообщения всему механизму крутящего момента (благодаря которому велосипед и перемещается в пространстве), изменяется внутренняя энергия материалов, из которых сделаны рычаги. Велосипедист нажимает на ручки, чтобы повернуть, - и опять совершает работу.

Внутренняя энергия внешнего покрытия (пластика или металла) увеличивается. Человек выезжает на полянку под яркое солнце - велосипед нагревается, изменяется его количество теплоты. Останавливается отдохнуть в тени старого дуба, и система охлаждается, теряя калории или джоули. Увеличивает скорость - растет обмен энергией. Однако расчет количества теплоты во всех этих случаях покажет очень маленькую, незаметную величину. Поэтому и кажется, что проявлений термодинамической физики в реальной жизни нет.

Применение расчетов по изменению количества теплоты

Вероятно, читатель скажет, что все это весьма познавательно, но зачем же нас так мучают в школе этими формулами. А сейчас мы приведем примеры, в каких областях человеческой деятельности они нужны непосредственно и как это касается любого в его повседневности.

Для начала посмотрите вокруг себя и посчитайте: сколько предметов из металла вас окружают? Наверняка больше десяти. Но прежде чем стать скрепкой, вагоном, кольцом или флешкой, любой металл проходит выплавку. Каждый комбинат, на котором перерабатывают, допустим, железную руду, должен понимать, сколько требуется топлива, чтобы оптимизировать расходы. А рассчитывая это, необходимо знать теплоемкость металлосодержащего сырья и количество теплоты, которое ему необходимо сообщить, чтобы произошли все технологические процессы. Так как выделяемая единицей топлива энергия рассчитывается в джоулях или калориях, то формулы нужны непосредственно.

Или другой пример: в большинстве супермаркетов есть отдел с замороженными товарами - рыбой, мясом, фруктами. Там, где сырье из мяса животных или морепродуктов превращается в полуфабрикат, должны знать, сколько электричества употребят холодильные и морозильные установки на тонну или единицу готового продукта. Для этого следует рассчитать, какое количество теплоты теряет килограмм клубники или кальмаров при охлаждении на один градус Цельсия. А в итоге это покажет, сколько электричества потратит морозильник определенной мощности.

Самолеты, пароходы, поезда

Выше мы показали примеры относительно неподвижных, статичных предметов, которым сообщают или у которых, наоборот, отнимают определенное количество теплоты. Для объектов, в процессе работы движущихся в условиях постоянно меняющейся температуры, расчеты количества теплоты важны по другой причине.

Есть такое понятие, как "усталость металла". Включает оно в себя также и предельно допустимые нагрузки при определенной скорости изменения температуры. Представьте, самолет взлетает из влажных тропиков в замороженные верхние слои атмосферы. Инженерам приходится много работать, чтобы он не развалился из-за трещин в металле, которые появляются при перепаде температуры. Они ищут такой состав сплава, который способен выдержать реальные нагрузки и будет иметь большой запас прочности. А чтобы не искать вслепую, надеясь случайно наткнуться на нужную композицию, приходится делать много расчетов, в том числе и включающих изменения количества теплоты.

Процесс передачи энергии от одного тела к другому без совершения работы называется теплообменом или теплопередачей . Теплообмен происходит между телами, имеющими разную температуру. При установлении контакта между телами с различными температурами происходит передача части внутренней энергии от тела с более высокой температурой к телу, у которого температура ниже. Энергия, переданная телу в результате теплообмена, называется количеством теплоты .

Удельная теплоемкость вещества:

Если процесс теплопередачи не сопровождается работой, то на основании первого закона термодинамики количество теплоты равно изменению внутренней энергии тела: .

Средняя энергия беспорядочного поступательного движения молекул пропорциональна абсолютной температуре. Изменение внутренней энергии тела равно алгебраической сумме изменений энергии всех атомов или молекул, число которых пропорционально массе тела, поэтому изменение внутренней энергии и, следовательно, количество теплоты пропорционально массе и изменению температуры:


Коэффициент пропорциональности в этом уравнении называется удельной теплоемкостью вещества . Удельная теплоемкость показывает, какое количество теплоты необходимо для нагревания 1 кг вещества на 1 К.

Работа в термодинамике:

В механике работа определяется как произведение модулей силы и перемещения и косинуса угла между ними. Работа совершается при действии силы на движущееся тело и равна изменению его кинетической энергии.

В термодинамике движение тела как целого не рассматривается, речь идет о перемещении частей макроскопического тела относительно друг друга. В результате меняется объем тела, а его скорость остается равной нулю. Работа в термодинамике определяется так же, как и в механике, но равна изменению не кинетической энергии тела, а его внутренней энергии.

При совершении работы (сжатии или расширении) изменяется внутренняя энергия газа. Причина этого состоит в следующем: при упругих соударениях молекул газа с движущимся поршнем изменяется их кинетическая энергия.

Вычислим работу газа при расширении. Газ действует на поршень с силой
, где- давление газа, а- площадь поверхностипоршня. При расширении газа поршень смещается в направлении силына малое расстояние
. Если расстояние мало, то давление газа можно считать постоянным. Работа газа равна:

Где
- изменение объема газа.

В процессе расширения газа совершает положительную работу, так как направление силы и перемещения совпадают. В процессе расширения газ отдает энергию окружающим телам.

Работа, совершаемая внешними телами над газом, отличается от работы газа только знаком
, так как сила, действующая на газ, противоположна силе, с которой газ действует на поршень, и равна ей по модулю (третий закон Ньютона); а перемещение остается тем же самым. Поэтому работа внешних сил равна:

.

Первый закон термодинамики:

Первый закон термодинамики является законом сохранения энергии, распространенным на тепловые явления. Закон сохранения энергии: энергия в природе не возникает из ничего и не исчезает: количество энергии неизменно, она только переходит из одной формы в другую.

В термодинамике рассматриваются тела, положение центра тяжести которых практически не меняется. Механическая энергия таких тел остается постоянной, а изменяться может лишь внутренняя энергия.

Внутренняя энергия может изменяться двумя способами: теплопередачей и совершением работы. В общем случае внутренняя энергия изменяется как за счет теплопередачи, так и за счет совершения работы. Первый закон термодинамики формулируется именно для таких общих случаев:

Изменение внутренней энергии системы при переходе ее из одного состояния в другое равно сумме работы внешних сил и количества теплоты, переданного системе:

Если система изолирована, то над ней не совершается работа и она не обменивается теплотой с окружающими телами. Согласно первому закону термодинамики внутренняя энергия изолированной системы остается неизменной .

Учитывая, что
, первый закон термодинамики можно записать так:

Количество теплоты, переданное системе, идет на изменение ее внутренней энергии и на совершение системой работы над внешними телами .

Второй закон термодинамики: невозможно перевести теплоту от более холодной системы к более горячей при отсутствии других одновременных изменений в обеих системах или в окружающих телах.

Наряду с механической энергией, любое тело (или система) обладает внутренней энергией. Внутренняя энергия – энергия покоя. Она складывается из теплового хаотического движения молекул, составляющих тело, потенциальной энергии их взаимного расположения, кинетической и потенциальной энергии электронов в атомах, нуклонов в ядрах и так далее.

В термодинамике важно знать не абсолютное значение внутренней энергии, а её изменение.

В термодинамических процессах изменяется только кинетическая энергия движущихся молекул (тепловой энергии недостаточно, чтобы изменить строение атома, а тем более ядра). Следовательно, фактически под внутренней энергией в термодинамике подразумевают энергию теплового хаотического движения молекул.

Внутренняя энергия U одного моля идеального газа равна:

Таким образом, внутренняя энергия зависит только от температуры. Внутренняя энергия U является функцией состояния системы, независимо от предыстории.

Понятно, что в общем случае термодинамическая система может обладать как внутренней, так и механической энергией, и разные системы могут обмениваться этими видами энергии.

Обмен механической энергией характеризуется совершенной работой А, а обмен внутренней энергией – количеством переданного тепла Q.

Например, зимой вы бросили в снег горячий камень. За счёт запаса потенциальной энергии совершена механическая работа по смятию снега, а за счёт запаса внутренней энергии снег был растоплен. Если же камень был холодный, т.е. температура камня равна температуре среды, то будет совершена только работа, но не будет обмена внутренней энергией.

Итак, работа и теплота не есть особые формы энергии. Нельзя говорить о запасе теплоты или работы. Это мера переданной другой системе механической или внутренней энергии. Вот о запасе этих энергий можно говорить. Кроме того, механическая энергия может переходить в тепловую энергию и обратно. Например, если стучать молотком по наковальне, то через некоторое время молоток и наковальня нагреются (это пример диссипации энергии).

Можно привести ещё массу примеров превращения одной формы энергии в другую.

Опыт показывает, что во всех случаях, превращение механической энергии в тепловую и обратно совершается всегда в строго эквивалентных количествах. В этом и состоит суть первого начала термодинамики, следующего из закона сохранения энергии.

Количество теплоты, сообщаемой телу, идёт на увеличение внутренней энергии и на совершение телом работы:

, (4.1.1)

– это и есть первое начало термодинамики , или закон сохранения энергии в термодинамике.

Правило знаков: если тепло передаётся от окружающей среды данной системе, и если система производит работу над окружающими телами, при этом . Учитывая правило знаков, первое начало термодинамики можно записать в виде:

В этом выражении U – функция состояния системы; dU – её полный дифференциал, а δQ и δА таковыми не являются. В каждом состоянии система обладает определенным и только таким значением внутренней энергии, поэтому можно записать:

,

Важно отметить, что теплота Q и работа А зависят от того, каким образом совершен переход из состояния 1 в состояние 2 (изохорически, адиабатически и т.д.), а внутренняя энергия U не зависит. При этом нельзя сказать, что система обладает определенным для данного состояния значением теплоты и работы.

Из формулы (4.1.2) следует, что количество теплоты выражается в тех же единицах, что работа и энергия, т.е. в джоулях (Дж).

Особое значение в термодинамике имеют круговые или циклические процессы, при которых система, пройдя ряд состояний, возвращается в исходное. На рисунке 4.1 изображен циклический процесс 1–а –2–б –1, при этом была совершена работа А.


Рис. 4.1

Так как U – функция состояния, то

(4.1.3)

Это справедливо для любой функции состояния.

Если то согласно первому началу термодинамики , т.е. нельзя построить периодически действующий двигатель, который совершал бы бóльшую работу, чем количество сообщенной ему извне энергии. Иными словами, вечный двигатель первого рода невозможен. Это одна из формулировок первого начала термодинамики.

Следует отметить, что первое начало термодинамики не указывает, в каком направлении идут процессы изменения состояния, что является одним из его недостатков.