Фенотип и генотип - их различия. Что такое генотипы? Значение генотипа в научной и образовательной сферах

В генетике существуют два очень важных понятия. Это понятия генотип и фенотип . Мы уже знаем, что наследственная конституция складывается из большого числа различных генов. Вся совокупность генов данного организма называется его генотипом , то есть понятие генотипа идентично понятию генетической конституции. Свой генотип (набор генов) каждый человек получает в момент зачатия и несет его без всяких изменений через всю свою жизнь. Активность генов может меняться, но их состав остается неизменным.

От понятия генотип следует отличать другое сходное понятие - геном. Геномом называется совокупность генов, характерная для гаплоидного набора хромосом особи данного вида . В отличие от генотипа геном является характеристикой вида, а не отдельной особи.
Фенотип же представляет собой любые проявления организма в каждый момент его жизни . Фенотип включает в себя и внешний вид, и внутреннее строение, и физиологические реакции, и любые формы поведения, наблюдаемые в текущий момент.

Например, уже упоминавшиеся группы крови системы АВ0 - это пример фенотипа на физиолого-биохимическом уровне. Хотя на первый взгляд многим кажется, что группа крови - это генотип, поскольку она четко определяется действием генов и не зависит от среды, однако это лишь проявление действия генов, и поэтому должно быть отнесено к категории фенотипов. Вспомним, что представители групп крови А или В могут иметь разные генотипы (гомозиготные и гетерозиготные).

Сложными фенотипами являются все поведенческие проявления. Например, почерк, который отличает данного индивида, является его поведенческим проявлением и также относится к категории фенотипов. Если группа крови в течение жизни не меняется, то почерк по мере тренировки навыка письма претерпевает значительные изменения.

Если генотипы наследуются и остаются неизменными в течение жизни индивида, то фенотипы большей частью не наследуются - они развиваются и являются следствием наших генотипов лишь в определенной мере, поскольку большую роль в становлении фенотипов играют условия внешней среды.

Весь процесс развития от оплодотворенной яйцеклетки до взрослого организма происходит не только под непрерывным регулирующим влиянием генотипа, но и под влиянием множества различных условий среды, в которых находится растущий организм. Поэтому необычайная изменчивость, свойственная живым организмам, обусловлена не только огромным разнообразием генотипов, возникающим вследствие рекомбинации генов и мутационного процесса, но в значительной степени объясняется и тем, что отдельные индивиды развиваются в различающихся условиях среды.

С давних пор идет полемика о том, что важнее для формирования организма - среда или генетическая конституция. Особенно острые споры разгораются там, где дело касается поведения человека, его психологических характеристик - темперамента, умственных способностей, черт личности. Не случайно, что именно с вопроса о природе умственной одаренности начались исследования в области генетики человека. Ф. Гальтон первым в научном трактате поставил рядом два понятия, которые в той или иной форме не сходят со страниц научной литературы до наших дней. Это понятия - "nature and nurture", то есть "природа и условия воспитания".


Генетиков , и генетиков поведения в частности, часто упрекают в отрицании роли среды. Однако такой упрек совершенно необоснован. Одним из основных постулатов генетики является тезис о том, что фенотип представляет собой результат взаимодействия генотипа и среды . В процессе этого взаимодействия и возникает то многообразие фенотипических проявлений, которое характерно для большинства признаков человека, относящихся к категории количественных и образующих непрерывный ряд изменчивости.

Фенотип

Феноти́п (от греческого слова phainotip - являю, обнаруживаю) - совокупность характеристик, присущих индивиду на определённой стадии развития. Фенотип формируется на основе генотипа , опосредованного рядом внешне средовых факторов. У диплоидных организмов в фенотипе проявляются доминантные гены.

Фенотип - совокупность внешних и внутренних признаков организма, приобретённых в результате онтогенеза (индивидуального развития).

Несмотря на кажущееся строгое определение, концепция фенотипа имеет некоторые неопределенности. Во-первых, большинство молекул и структур кодируемых генетическим материалом, не заметны во внешнем виде организма, хотя являются частью фенотипа. Например, именно так обстоит дело с группами крови человека. Поэтому расширенное определение фенотипа должно включать характеристики, которые могут быть обнаружены техническими, медицинскими или диагностическими процедурами. Дальнейшее, более радикальное расширение может включать приобретенное поведение или даже влияние организма на окружающую среду и другие организмы. Например, согласно Ричарду Докинзу , плотину бобров также как и их резцы можно считать фенотипом генов бобра.

Фенотип можно определить как «вынос» генетической информации навстречу факторам среды. В первом приближении можно говорить о двух характеристиках фенотипа: а) число направлений выноса характеризует число факторов среды, к которым чувствителен фенотип, - мерность фенотипа; б) «дальность» выноса характеризует степень чувствительности фенотипа к данному фактору среды. В совокупности эти характеристики определяют богатство и развитость фенотипа. Чем многомернее фенотип и чем он чувствительнее, чем дальше фенотип от генотипа, тем он богаче. Если сравнить вирус , бактерию , аскариду , лягушку и человека , то богатство фенотипа в этом ряду растет.

Историческая справка

Термин фенотип предложил датский ученый Вильгельм Иогансен в 1909 г., вместе с концепцией генотипа , чтобы различать наследственность организма от того, что получается в результате её реализации. Идею о различии носителей наследственности от результата их действия можно проследить уже в работах Грегора Менделя (1865) и Августа Вейсмана . Последний различал (в многоклеточных организмах) репродуктивные клетки (гаметы) от соматических.

Факторы, определяющие фенотип

Некоторые характеристики фенотипа напрямую определяются генотипом, например цвет глаз. Другие сильно зависят от взаимодействия организма с окружающей средой - например однояйцевые близнецы могут различаться по росту, весу и другим основным физическим характеристикам, несмотря на то, что несут одни и те же гены.

Фенотипическая дисперсия

Фенотипическая дисперсия (определяемая генотипической дисперсией) является основной предпосылкой для естественого отбора и эволюции . Организм как целое оставляет (или не оставляет) потомство, поэтому естественный отбор влияет на генетическую структуру популяции опосредованно через вклады фенотипов. Без различных фенотипов нет эволюции. При этом рецессивные аллели не всегда отражаются в признаках фенотипа, но сохраняются и могут быть переданы потомству.

Фенотип и онтогенез

Факторы, от которых зависит фенотипическое разнообразие, генетическая программа (генотип), условия среды и частота случайных изменений (мутации), обобщены в следующей зависимости:

генотип + внешняя среда + случайные изменения → фенотип

Способность генотипа формировать в онтогенезе , в зависимости от условий среды, разные фенотипы называют нормой реакции . Она характеризует долю участия среды в реализации признака. Чем шире норма реакции, тем больше влияние среды и тем меньше влияние генотипа в онтогенезе. Обычно чем разнообразнее условия обитания вида, тем шире у него норма реакции.

Примеры

Иногда фенотипы в разных условиях сильно отличаются друг от друга. Так, сосны в лесу высокие и стройные, а на открытом пространстве - развесистые. Форма листьев водяного лютика зависит от того, в воде или на воздухе оказался лист. У людей все клинически определяемые признаки - рост, масса тела, цвет глаз, форма волос, группа крови и т. д. являются фенотипическими.

Литература

См. также

  • Дисперсия полов

Wikimedia Foundation . 2010 .

Синонимы :

Смотреть что такое "Фенотип" в других словарях:

    Фенотип … Орфографический словарь-справочник

    фенотип - (от греч. phаino обнаруживаю, являю и typos отпечаток, форма, образец) любой поддающийся наблюдению признак организма морфологический, физический, поведенческий. Термин предложен в 1909 г. датским биологом В. Иогансеном. Ф. является продуктом… … Большая психологическая энциклопедия

    - [Словарь иностранных слов русского языка

    Совокупность всех признаков и свойств особи, формирующихся в процессе взаимодействия ее генетической структуры (генотипа) и внешней по отношению к ней среды. (Источник: «Микробиология: словарь терминов», Фирсов Н.Н., М: Дрофа, 2006 г.) Фенотип… … Словарь микробиологии

    - (от фен и тип), совокупность всех признаков организма (как правило, его внешний вид), представляющих собой результат взаимодействия генотипа со средой. Фенотип изменяется в процессе индивидуального развития особи. Экологический энциклопедический… … Экологический словарь

    фенотип - а, м. phénotype <гр. phaino показываю, являю + typos образец. биол. Совокупность всех признаков и свойств организма, сформировавшихся в процессе его индивидуального развития (онтогенеза). БАС 1. Лекс. Гранат: фенотип; СИС 1937: феноти/п;… … Исторический словарь галлицизмов русского языка

    - (от греческого phaino являю и тип), совокупность всех признаков и свойств организма, сформировавшихся в процессе его индивидуального развития. Складывается в результате взаимодействия наследственных свойств организма генотипа и условий среды… … Современная энциклопедия

    - (от греч. фен и тип) в биологии совокупность всех признаков и свойств организма, сформировавшихся в процессе его индивидуального развития. Складывается в результате взаимодействия наследственных свойств организма генотипа и условий среды обитания … Большой Энциклопедический словарь

    - (от греч. phaino являюсь, показываюсь и typos отпечаток, образ) изменения генотипических особенностей, обусловленные ходом индивидуальной жизнедеятельности при тех или иных средовых влияниях … Психологический словарь

    ФЕНОТИП, совокупность всех признаков и свойств организма, сформировавшихся в процессе его индивидуального развития. Складывается в результате взаимодействия НАСЛЕДСТВЕННОСТИ и условий среды обитания. Отличается от ГЕНОТИПА также и потому, что… … Научно-технический энциклопедический словарь

    - (от греч. phaino являю, обнаруживаю и тип), совокупность всех признаков и свойств особи, формирующихся в процессе взаимодействия её генетич. структуры (генотипа) и внешней, по отношению к ней, среды. Термин «Ф.» введён В. Иогансеиом в 1903. В Ф.… … Биологический энциклопедический словарь

Генотип - это совокупность всех генов организма, являющихся его наследственной основой. Фенотип - совокупность всех признаков и свойств организма, которые выявляются в процессе индивидуального развития в данных условиях и являются результатом взаимодействия генотипа с комплексом факторов внутренней и внешней среды. Фенотип в общем случае - это то, что можно увидеть (окрас кошки), услышать, ощутить (запах), а также поведение животного. У гомозиготного животного генотип совпадает с фенотипом, а у гетерозиготного - нет. Каждый биологический вид имеет свойственный только ему фенотип. Он формируется в соответствии с наследственной информацией, заложенной в генах. Однако в зависимости от изменений внешней среды состояние признаков варьирует от организма к организму, в результате чего возникают индивидуальные различия - изменчивость. 45. Цитогенетический мониторинг в животноводстве.

Организация цитогенетического контроля должна строиться с учетом ряда основных принципов. 1. необходимо организация оперативного обмена информацией межу учреждениями, занимающимися вопросами цитогенетического контроля, с этой целью необходимо создание единого банка данных, который включал бы сведения о носителях хромосомной патологии. 2. включение сведений о цитогенетической характеристике животного в племенные документы. 3. закупка семени и племенного материала из-за рубежа должна проводиться лишь при наличии цитогенетического сертификата.

Цитогенетическое обследование в регионах осуществляется с использованием информации о распространенности хромосомных аномалий в породах и линиях:

1) породы и линии, в которых зарегистрированы случаи хромосомной патологии, передающейся по наследству, а также потомки носителей хромосомных аномалий при отсутствии на них цитогенетического паспорта;

2) породы и линии, не исследованные цитогенетически ранее;

3) все случаи массового нарушения репродукции или генетической патологии неясной природы.

В первую очередь обследованию подлежат производители и самцы, предназначенные для ремонта стада, а также племенной молодняк двух первых категорий. Хромосомные аберрации можно разделить на два больших класса: 1.конституциональные – присущие всем клеткам, унаследованные от родителей или возникшие в процессе созревания гамет и 2. соматические – возникающие в отдельных клетках в ходе онтогенеза. С учетом генетической природы и фенотипического проявления хромосомных аномалий несущие их животные могут быть подразделены на четыре группы: 1) носители наследуемых аномалий с предрасположенностью к снижению репродуктивных качеств в среднем на 10 %. Теоретически 50 % потомков наследуют патологию. 2) носители наследуемых аномалий, приводящих к четко выраженному снижению репродукции (30-50 %) и врожденной патологии. Около 50 % потомков наследуют патологию.

3) Животные с аномалиями, возникающими de novo, приводящими к врожденной патологии (моносомии, трисомии и полисомии в системе аутосом и половых хромосом, мозаицизм и химеризм). В подавляющем большинстве случаев такие животные бесплодны. 4) Животные с повышенной нестабильностью кариотипа. Репродуктивная функция снижена, возможна наследственная предрасположенность.

46. плейтропия (множественное действие генов) Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена. Плейотропное действие гена может быть первичным и вторичным. При первичной плейотропии ген проявляет свой множественный эффект. При вторичной плейотропии есть один первичный фенотипний проявление гена, вслед за которым развивается ступенчатый процесс вторичных изменений, приводящих к множественным эффектам. При плейотропии, ген, воздействуя на какой то один основной признак, может также менять, модифицировать проявление других генов, в связи с чем введено понятие о генах-модификаторах. Последние усиливают или ослабляют развитие признаков, кодируемых "основным" геном. Показателями зависимости функционирования наследственных задатков от характеристик генотипа является пенетрантность и экспрессивность. Рассматривая действие генов, их аллелей необходимо учитывать и модифицирующее влияние среды, в которой розвивается организм. Такое колебание классов при расщеплении в зависимости от условий среды получило название пенетрантность - сила фенотипного проявления. Итак, пенетрантность - это частота проявления гена, явление появления или отсутствия признака у организмов, одинаковых по генотипу. Пенетрантность значительно колеблется как среди доминантных, так и среди рецессивных генов. Она может быть полной, когда ген проявляется в 100% случаев, или неполной, когда ген проявляется не у всех особей, содержащих его. Пенетрантностью измеряется процентом организмов с фенотипным признаком от общего количества обследованных носителей соответствующих аллелей. Если ген полностью, независимо от окружающей среды, определяет фенотипное проявление, то он имеет пенетрантность 100 процентов. Однако некоторые доминантные гены проявляются менее регулярно.

Множественное или плейотропное действие генов связывают с тем, на какой стадии онтогенеза проявляются соответствующие аллели. Чем раньше проявится аллель, тем больше эффект плейотропии.

Учитывая плейотропный эффект многих генов, можно предположить, что часто одни гены выступают в роли модификаторов действия других генов.

47. современные биотехнологии в животноводстве. Применение селекцион.- ген-ое.значение(исск.осем; транспл. Плода).

Генетика не раз поражала нас своими достижениями в области изучения генома человека и других живых организмов. Простейшие манипуляции и вычисления не обходятся без общепринятых понятий и знаков, которыми не обделена и эта наука.

Что такое генотипы?

Под термином понимают совокупность генов одного организма, которые хранятся в хромосомах каждой его клетки. Понятие генотипа следует отличать от генома, т. к. оба слова несут различный лексический смысл. Так, геном представляет собой абсолютно все гены данного вида (геном человека, геном обезьяны, геном кролика).

Как формируется генотип человека?

Что такое генотип в биологии? Изначально предполагали, что набор генов каждой клетки организма отличается. Такая идея была опровергнута с того момента, как ученые раскрыли механизм образования зиготы из двух гамет: мужской и женской. Так как любой живой организм образуется из зиготы путем многочисленных делений, нетрудно догадаться, что все последующие клетки будут иметь абсолютно одинаковый набор генов.

Однако следует отличать генотип родителей от такового у ребенка. Зародыш в утробе матери имеет по половине набора генов от мамы и от папы, поэтому дети хоть и похожи на своих родителей, но в то же время не являются их 100% копиями.

Что такое генотип и фенотип? В чем их отличие?

Фенотип - это совокупность всех внешних и внутренних признаков организма. Примерами могут служить цвет волос, наличие веснушек, рост, группа крови, количество гемоглобина, синтез или отсутствие фермента.

Однако фенотип не является чем-то определенным и постоянным. Если наблюдать за зайцами, то окраска их шерсти меняется в зависимости от сезона: летом они серые, а зимой белые.

Важно понимать, что набор генов всегда постоянный, а фенотип может варьироваться. Если принять во внимание жизнедеятельность каждой отдельной клетки организма, любая из них несет абсолютно одинаковый генотип. Однако в одной синтезируется инсулин, в другой кератин, в третьей актин. Каждая не похожа друг на друга по форме и размерам, функциям. Это и называется фенотипическим проявлением. Вот что такое генотипы и в чем проявляются их отличия от фенотипа.

Данный феномен объясняется тем, что при дифференцировке клеток зародыша одни гены включаются в работу, а другие находятся в “спящем режиме”. Последние либо всю жизнь остаются неактивными, либо вновь используются клеткой в стрессовых ситуациях.

Примеры записи генотипов

На практике изучение проводится с помощью условной шифровки генов. Например, ген карих глаз записывают большой буквой «А», а проявление голубых глаз - маленькой буквой «а». Так показывают, что признак кареглазости доминантный, а голубой цвет - это рецессив.

Так, по признаку люди могут быть:

  • доминантными гомозиготами (АА, кареглазые);
  • гетерозиготами (Аа, кареглазые);
  • рецессивными гомозиготами (аа, голубоглазые).

По такому принципу изучают взаимодействие генов между собой, причем обычно используют сразу несколько пар генов. Отсюда возникает вопрос: что такое 3 генотип (4/5/6 и т. д.)?

Такое словосочетание означает, что берутся сразу три пары генов. Запись будет, например, такой: АаВВСс. Здесь появляются новые гены, которые отвечают за совершенно другие признаки (например, прямые волосы и кудряшки, наличие белка или его отсутствие).

Почему типичная запись генотипа условна?

Любой ген, открытый учеными, носит определенное название. Чаще всего это английские термины или словосочетания, которые в длину могут достигать немалых размеров. Орфография названий сложна для представителей зарубежной науки, поэтому ученые ввели более простую запись генов.

Даже учащийся старшей школы иногда может знать, что такое генотип 3а. Такая запись означает, что за ген отвечают 3 аллели одного и того же гена. При использовании настоящего названия гена понимание принципов наследственности могло бы быть затруднено.

Если речь идет о лабораториях, где проводятся серьезные исследования кариотипа и изучение ДНК, то там прибегают к официальным названиям генов. Особенно это актуально для тех ученых, которые публикуют результаты своих исследований.

Где применяются генотипы

Еще одна положительная черта использования простых обозначений - это универсальность. Тысячи генов имеют свое уникальное название, однако каждый из них можно представить одной лишь буквой латинского алфавита. В подавляющем большинстве случаев при решении генетических задач на разные признаки буквы повторяются вновь и вновь, при этом каждый раз расшифровывается значение. Например, в одной задаче ген B - это черный цвет волос, а в другой - это наличие родинки.

Вопрос “что такое генотипы” поднимается не только на занятиях по биологии. На самом деле условность обозначений обусловливает нечеткость формулировок и терминов в науке. Грубо говоря, использование генотипов - это математическая модель. В реальной жизни все сложнее, несмотря на то, что общий принцип все-таки удалось перенести на бумагу.

По большому счету генотипы в таком виде, в котором мы их знаем, применяются в программе школьного и вузовского обучения при решении задач. Это упрощает понимание темы “что такое генотипы” и развивает у учащихся способность к анализированию. В будущем навык использования такой записи также пригодится, однако при реальных исследованиях настоящие термины и названия генов более уместны.

В настоящее время гены изучаются в различных биологических лабораториях. Шифрование и использование генотипов актуально для медицинских консультаций, когда один или несколько признаков прослеживаются в ряде поколений. На выходе специалисты могут прогнозировать фенотипическое проявление у детей с определенной долей вероятностью (например, появление в 25% случаев блондинов или рождение 5% детей с полидактилией).



Добавить свою цену в базу

Комментарий

Понятия «генотип» и «фенотип» интимным образом связаны с понятиями «наследственность» и «среда», но не идентичны им. Эти понятия ввел В. Иоганнсен в 1909 г. Понятием «генотип» обозначается сумма всех генов организма, наследственная конституция организма, совокупность всех наследственных задатков данной клетки или организма, т.е. набор генов, состоящих из молекул дезоксирибонуклеино-вой кислоты (ДНК) и организованных в хромосомный ряд. Генотип организма будет результатом слияния двух гамет (яйцеклетки и оплодотворяющего ее спермия). Понятием «фенотип» обозначаются любые проявления живущего организма – его морфологические, физиологические, психологические и поведенческие особенности. Фенотипы не наследуются, а формируются в течение жизни; они – продукт чрезвычайно сложного взаимодействия генотипа и среды.

Отметим, что существуют единичные признаки, фенотип кᴏᴛᴏᴩых полностью определяется их генетическими механизмами. Примеры таких признаков – полидактилия (наличие добавочного пальца) или группа крови человека. При этом подобных признаков совсем немного, и за очень редким исключением фенотип признака определяется совместным влиянием генотипа и среды, в кᴏᴛᴏᴩой ϶ᴛᴏт генотип существует.

Для любого генотипа существует диапазон сред, в кᴏᴛᴏᴩом он может проявить себя «максимально»; среду, одинаково благоприятную для всех генотипов, найти нельзя. Дело не в «обогащённости» сред, а в их качественном разнообразии. Сред должно быть много, ᴛᴏбы у каждого генотипа была возможность найти «сʙᴏю» среду и реализоваться. Важно заметить, что однообразная среда, какой бы обогащенной она ни была, будет благоприятствовать развитию только определенных, а не всех генотипов.

Концепция нормы реакции и развитие

Популяционный подход к оценке наследуемости особенностей поведения не позволяет описывать процессы взаимодействия генотипа и среды в индивидуальном развитии. Когда в результате психогенетических исследований, проведенных, скажем, на близнецах или на приемных детях, признак относят к наследуемому, это не значит, что он наследственно детерминирован в общепринятом смысле этого слова.

Психогенетические исследования ведутся в основном на популяционном уровне. Когда на основании коррелирующего поведения у родственников популяционные генетики делают вывод о наследуемости признака, это не означает, что индивидуальное развитие данного поведения обусловлено исключительно генетическими причинами.

Высокая наследуемость свидетельствует лишь о том, что разнообразие индивидов в популяции в значительной степени связано с генотипическими различиями между ними. Имеется в виду, что процент индивидов, обладающих данным признаком в популяции потомков, может быть предсказан, исходя из знаний о родительской популяции. Однако значение показателя наследуемости ничего не говорит о последовательности событий в индивидуальном развитии признака и о том, какой конечный фенотип будет результатом развития конкретного индивида. В этом смысле признак с высокой оценкой наследуемости не является детерминированным генотипом, хотя такие интерпретации часто встречаются даже в публикациях специалистов. Это совсем разные вещи – разделить источники вариативности в популяции на генетические и средовые или искать генетические и средовые причины, лежащие в основе онтогенетического формирования конкретных фенотипов.

Даже при 100%-ной наследуемости, как она понимается в генетике поведения, есть возможность для влияния среды на формирование признака в индивидуальном развитии. Такой подход и соответствует генетическим представлениям о норме реакции. Вспомним, что наследуется не признак, а именно норма реакции.

О норме реакции в данном разделе следует поговорить особо. Во многих учебниках генетики, в школьном курсе биологии и других книгах часто под нормой реакции понимают пределы, которые генотип кладет формированию фенотипа. Такое понимание нормы реакции, на наш взгляд, менее продуктивно, чем то, которого придерживаемся мы в ходе изложения материала. Норма реакции – специфический характер реакции генотипа на изменения среды. Введение в определение нормы реакции понятия предела вполне объяснимо, поскольку в обычных стандартных условиях развития, действительно, генотипы ограничивают возможности развития фенотипов. Например, люди с хорошими генетическими задатками для развития интеллекта при прочих равных всегда будут опережать людей с плохими задатками. Считается, что среда может сдвигать конечный результат развития, но в пределах диапазона, который генетически детерминирован. Но, в действительности, это ложная посылка, поскольку мы никогда не можем быть уверены, что признак достиг максимального развития, возможного для данного генотипа.

Характер фенотипических проявлений генотипа не может быть протестирован для всех возможных сред, поскольку они неопределенно. В отношении человека мы не имеем возможности не только произвольно контролировать параметры среды, в которой происходит развитие, но часто, анализируя средовые влияния на признак, затрудняемся даже в выборе тех параметров, сведения о которых необходимо получить, особенно если речь идет о поведенческих характеристиках.

Современная психобиология развития поставляет все больше данных о значительных возможностях среды, в частости раннего опыта, в том числе эмбрионального, влиять на активность генов и структурное и функциональное формирование нервной системы. Таким образом, если в традиционной среде создается иллюзия того, что существуют пределы для формирования фенотипа, то мы не можем быть уверены, что развитие, в процессе которого генотип будет подвергаться необычным, нетрадиционным воздействиям, не приведет к возникновению таких особенностей поведения, которые в обычных условиях при данном генотипе были бы невозможны. Таким образом, более правильно считать, что пределы фенотипа непознаваемы.

Многие с интересом следят за публикациями о нетрадиционных методах воспитания младенцев, а некоторые родители испытывают их на своих детях. Кто-то пытается вырастить музыканта, начиная с внутриутробного периода, когда мать, вынашивающая ребенка, с помощью нехитрых приспособлений обеспечивает своему плоду прослушивание музыкальных произведений или сама поет колыбельные еще не родившемуся ребенку. Кто-то рожает в воде и затем плавает с новорожденным в ванне или бассейне. Кто-то увлекается динамической гимнастикой и закаливанием. Все чаще в роддомах младенца в первые минуты жизни не отлучают от матери, как это традиционно делалось раньше, а еще до перерезания пуповины кладут к ней на живот, обеспечивая столь естественный контакт матери и новорожденного.

Все эти «эксперименты» есть не что иное, как воздействие нетрадиционного (для данного периода развития общества) раннего опыта на плод и новорожденного, и эти воздействия не лишены смысла, поскольку интенсивно формирующаяся нервная система, от которой, в конечном счете, и будет зависеть наше поведение и все высшие психические функции, очень податлива к воздействиям именно в ранний период онтогенеза. Что же известно на сегодняшний день о влиянии раннего опыта, то есть среды, на развитие нервной системы и может ли эта среда влиять непосредственно на работу генетического аппарата? Иными словами, это вопрос о том, какими знаниями о процессе взаимодействия генотипа и среды в индивидуальном развитии мы располагаем.

Как среда может взаимодействовать с генотипом в процессе развития?

Понятно, что результат развития – фенотип зависит от совместного действия генов и среды. Гены и признаки связаны сложной сетью путей развития. Все индивидуальные различия, которыми занимаются дифференциальные психологи и психогенетики, являются результатом обстоятельств развития конкретных индивидов в конкретных средах. Часто индивиды, воспитанные в явно различающихся средах, имеют много общего. И наоборот, сиблинги, воспитывающиеся в одной семье, казалось бы при сходных обстоятельствах, за счет тонких различий в условиях воспитания и развития реально будут испытывать весьма различные воздействия как физической, так и социальной среды.

Таким образом, процесс взаимодействия со средой сложен и неоднозначен. Отметим также, что психологи и другие исследователи часто пользуются термином «взаимодействие» в статистическом смысле, когда исследуется взаимодействие отдельных факторов в продуцировании какого-либо измеряемого эффекта. Подчеркнем, что статистическое взаимодействие факторов и взаимодействие генов и среды в индивидуальном развитии – это совершенно разные вещи. Их не следует путать.

Для нас вполне привычной является формулировка, в которой утверждается, что проявление фенотипа является результатом взаимодействия генотипа со средой в процессе развития. Однако если вдуматься в это утверждение, оно не покажется столь очевидным. Ведь взаимодействие предполагает, что его участники вступают в контакт, соприкасаются. На самом деле наш генотип, то есть генетический аппарат, спрятан глубоко внутри клетки и отделен от внешней среды не только покровами тела, но и клеточной и ядерной оболочками. Как же внешняя среда может взаимодействовать с генетическими структурами?

Ясно, что гены и окружающий мир непосредственно не соприкасаются. С внешней средой взаимодействует организм в целом; гены же взаимодействуют с различными биохимическими субстанциями внутри клетки. А вот различные клеточные субстанции могут испытывать влияние внешнего мира. Рассмотрим, что известно об этих процессах сегодняшней науке. Для этого снова придется обратиться к молекулярной генетике и более подробно рассмотреть, как функционируют гены, поскольку в предыдущем изложении мы лишь констатировали, что главной функцией гена является кодирование информации, необходимой для синтеза специфического белка.

Случайности развития

Вариабельность феноменов развития зависит от многих причин. Наследственность имеет тенденцию уменьшать вариабельность развития, тогда как условия, не связанные с наследственностью, имеют тенденцию ее повышать. Некоторые исследователи развития выделяют четыре типа случайных факторов, которые влияют на вариабельность развития:

  • случайности в подборе родительских пар, гены которых слагают генотип индивида;
  • случайности эпигенетических (то есть внешних по отношению к генотипу) процессов в пределах индивидуального онтогенеза;
  • случайности материнской среды, в которой развивается индивид;
  • случайности нематеринской среды, в которой развивается индивид.

Хотя это и случайные события, однако, все они имеют элемент наследственности. Генотип наследуется от родителей, и у потомка с родителями имеются общие гены, которые влияют на ход индивидуального развития. Эпигенетические процессы внутри организма представляют собой влияния других клеток или их продуктов на активность генотипа данной клетки. Поскольку все клетки организма имеют один и тот же генотип, естественно, что эпигенетические влияния связаны с наследственностью. Однако эпигенетические процессы являются стохастическими, открытыми влиянию факторов среды организма и, следовательно, любым историческим случайностям.

Материнская среда млекопитающих является очень важным элементом внешней среды. Матери обеспечивают внутриутробную и постнатальную (уход за младенцем и воспитание) среду ребенка. Понятно, что на эти условия действует генотип матери. Частично же гены матери являются общими с потомком, поэтому материнская среда может наследоваться. Материнская среда также чувствительна к историческим случайностям.

Нематеринские средовые эффекты также влияют на вариабельность развития. Сюда входят факторы, которые выбираются самим индивидом или формируются окружающими людьми, в том числе родственниками, с которыми у него имеются общие гены. Поэтому и эти средовые эффекты в какой-то мере также находятся не только под влиянием случайных средовых событий, но и под влиянием генов, и также наследуются (генотип-средовая ковариация).

Таким образом, в соответствии с приведенной классификацией во всех описанных элементах внешней по отношению к данному индивиду среды имеются механизмы для наследования как генетического, так и негенетического (различные традиции и т.п.).

Естественно, на развитие действуют и ненаследуемые факторы. Это те особенности среды, которые не связаны с изменениями, вызываемыми самим развивающимся индивидом или его родственным окружением. Они могут быть как случайными, так и закономерными. К закономерным можно отнести циклические изменения (смена дня и ночи, смена времен года и т.п.), повсеместные воздействия (гравитация) или предсказуемые факторы (температура, давление). Ненаследуемые факторы присутствуют также в материнской и другой социальной среде (качество питания матери, уровень стресса матери, число и пол сиблингов и др.). Случайно или систематически изменяющиеся средовые события способствуют вариативности развития.

Все внешние по отношению к генам события, которые имеют место в процессе онтогенеза, в совокупности с генетическими факторами создают тот фон, на котором протекает развитие. Благодаря воздействию огромного разнообразия закономерных и случайных событий в онтогенезе, развивающиеся системы могут организовываться и реорганизовываться. Гены делают развитие возможным, но и другие компоненты, влияющие на развитие системы, являются не менее важными участниками процесса развития.

В начале изложения, определяя понятие фенотипа, мы подчеркивали, что фенотип является результатом взаимодействия генотипа и среды, однако в свете того, что было сказано о процессе индивидуального развития, мы должны внести некоторое уточнение в эту формулировку и, наряду с факторами среды, упомянуть о случайностях развития, которые не могут быть сведены к чисто средовым влияниям. Если бы мы попытались графически изобразить зависимость фенотипа от различных факторов, то нам понадобилось бы по крайней мере четырехмерное пространство, в котором, помимо осей для генотипа и среды, обязательно должна была бы присутствовать и ось для случайностей развития.

Эндофенотип как промежуточный уровень между генотипом и фенотипом

Большой разброс КН разных способностей вызывает необходимость обращения к промежуточному уровню между генотипом и фенотипом. Если генотип – это сумма всех генов организма, то фенотип – это любые проявления живущего организма, «продукт реализации данного генотипа в данной среде». Между геном (генотипом) и поведением (фенотипом) нет прямого соответствия, а есть только неоднократно опосредованная связь. Фенотипически одинаковые признаки, измеренные по одной и той же методике, могут иметь разную психологическую структуру в зависимости от возраста и индивидуальных особенностей индивида и соответственно могут быть связанными с разными генами. Наличие, отсутствие, степень выраженности одного фенотипического признака определяются многими генами, результат действия которых зависит не только от имеющихся вариантов генов, но и от множества других факторов. «Непосредственное биохимическое проявление гена и его влияние на психологические особенности разделены «горным хребтом» промежуточных биомолекулярных событий». Поэтому одним из способов, облегчающих прослеживание пути от генов к поведению, стало нахождение эндофенотипов – промежу- точных звеньев, опосредующих влияние генотипа на фенотипические переменные.

Понятие эндофенотипа, введенное И. Готтесманом в 1972 г. при изучении психических расстройств, получило широкое распространение и при анализе психологических и психофизиологических характеристик.

Признак, или показатель, может быть признан эндофенотипом когнитивных способностей, если он удовлетворяет следующим критериям:

  1. он устойчив и надежно определяется;
  2. выявлена его генетическая обусловленность;
  3. он коррелирует с изучаемой когнитивной способностью (фенотипическая корреляция);
  4. связь между ним и когнитивной способностью частично выводится из общих генетических источников (генетическая корреляция). А если ставится задача прослеживания биологического пути от генов к когнитивной способности, то важно выполнение еще одного критерия;
  5. наличие теоретически осмысленной (в том числе причинной) связи между показателем и когнитивной способностью.

В качестве эндофенотипов интеллекта принято рассматривать частные когнитивные характеристики или индивидуальные особенности функционирования мозга, его анатомии и физиологии.

Из частных когнитивных характеристик используется время реакции выбора. Известно, что индивидуальные различия во времени реакции выбора объясняют около 20% дисперсии значений интеллекта. Было установлено, что связи между временем реакции выбора и значениями вербального и невербального интеллекта объясняются генетическими факторами: обнаружено 22 и 10% общих генов соответственно. Предполагается, что среди общих генов есть отвечающие за миелинизацию аксонов ЦНС (как известно, покрытый миелиновой оболочкой аксон проводит нервный импульс быстрее). К частным когнитивным характеристикам, рассматриваемым в качестве эндофенотипов интеллекта, относится и рабочая память. Однако отметим, что ни время реакции выбора, ни рабочая память, ни другие психологические параметры, важные для понимания природы интеллектуальных различий, все же не раскрывают путь от генотипа к интеллекту через устройство и функционирование мозга, поскольку не являются непосредственными показателями работы мозга. Кроме того, при использовании этих показателей мы вновь сталкиваемся с упомянутой выше высокой чувствительностью КН к изменению условий эксперимента.

Возможными эндофенотипами считают также параметры функционирования мозга на разных уровнях физиологии, морфологии и биохимии мозга, включая структурные белки, ферменты, гормоны, метаболиты и т.п. Исследуются ЭЭГ, скорость проведения нервных импульсов, степень миелинизации нервных волокон и т.д. Было показано, что с интеллектом коррелирует скорость периферической нервной проводимости (СПНП), размеры мозга. В качестве промежуточных фенотипов интеллекта исследовались амплитудно-временные и топографические характеристики вызванных потенциалов. Однако теоретические обоснования связей этих характеристик с интеллектом, как правило, не вскрывают специфики интеллектуальных способностей. Так, размер мозга соотносится с толщиной миелиновой оболочки, которая может хуже или лучше защищать клетки от влияния соседних нейронов, что, как утверждается, влияет на интеллект. СПНП определяет количественные характеристики трансмиссии белков, а ее ограничение приводит к ограничению скорости переработки информации, что ведет к снижению показателей интеллекта.

Установлена связь общего фактора интеллекта (g фактора) с количеством серого вещества. Еще один возможный эндофенотип когнитивных способностей – специфическое расположение структур мозга. Выявляется, что КН структурных характеристик мозга очень высок, особенно во фронтальных, ассоциативных и традиционно речевых зонах (Вернике и Брока). Так, в области срединных лобных структур можно достоверно говорить о КН порядка 0.90–0.95.

Однако эндофенотипы, непосредственно отражающие морфофункциональные характеристики мозга, не учитывают способность к планированию деятельности, применяемые стратегии и другие особенности, существенно влияющие на успешность и скорость решения задач, т.е. не учитывают психологическую организацию исследуемого фенотипа (когнитивных способностей). Между эндофенотипами такого рода и интеллектом существует опосредованная связь: эндофенотипы отражают далекий от интеллекта уровень анализа и поэтому не дают целостного представления о пути формирования интеллектуальных функций.

Е. Де Геус с соавторами считают весьма продуктивным использование в качестве эндофенотипов (помимо специальных когнитивных способностей) нейрофизиологических характеристик и результатов непосредственного измерения мозговых структур и их функционирования с помощью ЭЭГ, МРТ и др.

Однако использование нейрофизиологических показателей в исследованиях по генетике поведения приводит к необходимости адаптации методов нейронауки к требованиям психогенетики. Проблема заключается в том, как пишут Р. Пломин и С. Кослин, что нейронауку интересуют в первую очередь общие закономерности, вследствие чего данные, как правило, усредняются и анализируются только средние значения. Психогенетику, напротив, интересует разброс индивидуальных показателей, который в ряде методов нейронауки отражает не только индивидуальные особенности, но и недостаточную точность аппаратуры. Это создает существенные трудности в получении достоверных данных. Кроме того, техническая сложность этих методов не позволяет исследовать достаточно большие выборки, необходимые для психогенетического анализа.

Выводы

  1. Исследования развития в психогенетике ведутся на популяционном уровне; получаемые в результате количественные соотношения генетических и средовых компонент изменчивости неприложимы к развитию конкретного фенотипа. Необходимо помнить, что взаимовлияния генотипа и среды в индивидуальном развитии неразделимы.
  2. Формирование фенотипа в развитии происходит при непрерывном взаимодействии генотипа и среды. Факторы внешней среды (физические, социальные) могут влиять на генотип через факторы внутренней среды организма (различные биохимические субстанции внутри клетки).
  3. Основным механизмом взаимодействия генотипа и среды на уровне клетки является регуляция экспрессии гена, проявляющейся в разной активности синтеза специфического белка. Большая часть процессов регуляции происходит на уровне транскрипции, то есть касается процессов считывания генетической информации, необходимой для синтеза белка.
  4. Среди всех органов тела мозг занимает первое место по количеству активных генов. По некоторым оценкам почти каждый второй ген в геноме человека связан с обеспечением функций нервной системы.
  5. Ранний опыт имеет значительные возможности влиять на работу генетического аппарата. Особая роль здесь принадлежит так называемым ранним генам, которые способны к быстрой, но преходящей экспрессии в ответ на сигналы из внешней среды. По всей видимости, ранние гены играют значительную роль в процессах обучения. Значительные возможности регуляции экспрессии генов связаны также с действием различных гормонов.
  6. Развитие нервной системы и, в конечном счете, поведения представляет собой динамический иерархически организованный системный процесс, в котором в равной степени важны генетические и средовые факторы. Немаловажную роль играют также различные случайности развития, которые не могут быть сведены к чисто средовым.
  7. Развитие представляет собой эпигенетический процесс, приводящий к формированию значительной межиндивидуальной вариабельности даже у изогенных организмов. Основным принципом морфогенеза нервной системы является возникновение максимальной избыточности клеточных элементов и их связей на ранних этапах развития, с последующей элиминацией функционально нестабильных элементов в процессе реципрокного взаимодействия между всеми уровнями развивающейся системы, включая взаимодействия внутри клетки, между клетками и тканями, между организмом и средой.
  8. Процесс формирования фенотипа в развитии носит непрерывный диалектический и исторический характер. На любом этапе онтогенеза характер реакции организма на воздействие среды определяется как генотипом, так и историей всех обстоятельств развития.