Функция распределения Максвелла-Больцмана. Барометрическая формула

В равновесном состоянии параметры газа (давле-ние, объем и температура) остаются неизменными, однако микро-состояния — взаимное расположение молекул, их скорости — не-прерывно изменяются. Из-за огромного количества молекул прак-тически нельзя определить значения их скоростей в какой-либо момент, но возможно, считая скорость молекул непрерывной слу-чайной величиной, указать распределение молекул по скоростям.

Выделим отдельную молекулу. Хаотичность движения позволяет, например, для проекции скорости u x молекулы принять нормальный закон распределения. В этом случае, как показал Дж. К. Максвелл , плотность вероятности записывается следующим образом:

аналогично для других осей

Используя (2.28), из (2.31) получаем:

Отметим, что из (2.32) можно получить максвелловскую функ-цию распределения вероятностей абсолютных значений скорости (распределение Максвелла по скоростям):

(2.36)

Среднюю скорость молекулы (математическое ожидание) мож-но найти по общему правилу [см. (2.20)]. Так как определяется среднее значение скорости, то пределы интегрирования берут от 0 до ¥ (математические подробности опущены):

где М = т 0 N A — молярная масса газа, R = k N A — универсальная газовая постоянная, N A — число Авогадро.

При увеличении температуры максимум кривой Максвелла смещается в сторону больших скоростей и распределение молекул по u видоизменяется (рис. 2.6; Т 1 < Т 2 ). Распределение Максвелла позволяет вычислить число моле-кул, скорости которых лежат в определенном интервале Du. Полу-чим соответствующую формулу.


Так как общее число N молекул в газе обычно велико, то веро-ятность dP может быть выражена как отношение числа dN моле-кул, скорости которых заключены в некотором интервале du, к общему числу N молекул:

либо графически вычислить площадь криволинейной трапеции в пределах от u 1 до u 2 (рис. 2.7).

Если интервал скоростей du достаточно мал, то число молекул, скорости которых соответствуют этому интервалу, может быть рассчитано приближенно по формуле (2.38) или графически как площадь прямоугольника с основанием du.

На вопрос, сколько молекул имеют скорость, равную како-му-либо определенному значению, следует странный, на первый взгляд, ответ: если совершенно точно задана скорость, то интер-вал скоростей равен нулю (du = 0) и из (2.38) получаем нуль, т. е. ни одна молекула не имеет скорости, точно равной наперед задан-ной. Это соответствует одному из положений теории вероятнос-тей: для непрерывной случайной величины, каковой является скорость, невозможно «угадать» совершенно точно ее значение, которое имеет по крайней мере хотя бы одна молекула в газе.

Распределение молекул по скоростям подтверждено различны-ми опытами.

Распределение Максвелла можно рассматривать как распреде-ление молекул не только по скоростям, но и по кинетическим энергиям (так как эти понятия взаимосвязаны).

Распределение Больцмана.

Если молекулы находятся в ка-ком-либо внешнем силовом поле, например гравитационном поле Земли, то можно найти распределение по их потенциальным энергиям, т. е. установить концентрацию частиц, обладающих не-которым определенным значением потенциальной энергии.

Распределение частиц по потенциальным энергиям в си-ловых полях гравитационном, электрическом и др. называют распределением Больцмана.

Применительно к гравитационному полю это распределение может быть записано в виде зависимости концентрации п моле-кул от высоты h над уровнем Земли или от потенциальной энер-гии молекулы mgh:

Выражение (2.40) справедливо для частиц идеального газа. Графи-чески эта экспоненциальная зависимость изображена на рис. 2.8.

Такое распределение молекул в поле тяготения Земли можно ка-чественно, в рамках молекулярно-кинетических представлений, объяснить тем, что на молекулы оказывают влияние два противо-положных фактора: гравитационное поле, под действием которого все молекулы притягиваются к Земле, и молекулярно-хаотическое движение, стремящееся равномерно разбросать молекулы по всему возможному объему.

В заключение полезно заметить некоторое сходство экспонен-циальных членов в распределениях Максвелла и Больцмана:

В первом распределении в показателе степени отношение кине-тической энергии молекулы к kT, во втором — отношение потен-циальной энергии к kT.

Максвелл

В состоянии теплового равновесия, средняя квадратичная скорость молекул в газе, при Т=cоnst, остается постоянной и равной . Это объясняется тем, что в газе, устанавливается некоторое стационарное статистическое распределение молекул по значениям скоростей, называемое распределением Максвелла.

рис.1 рис. 2 Распределение Максвелла описывается некоторой функцией f(u), называемой функ­ци­ей распределения молекул по скоростям. , где N – общее число молекул, dN(u)- число молекул, скорости которых принадлежат интервалу скоростей от u до u + du. Функция Максвелла f(u) равна вероятности того, что величина скорости наугад выбранной молекулы принадлежит единичному интервалу скоростей. Явный вид функции f(u) был получен теоретически Максвеллом . функции распределения-рис.1. Из графика следует, что функция распределения стремится к нулю при u®0 и u®¥ и проходит через максимум при некоторой скорости u В, называемой наиболее вероятной скоростью. Этой скоростью и близкой к ней обладает наибольшее число молекул. Кривая несимметрична относительно u В.Значение наиболее вероятной скорости можно найти, используя условие для максимума функции f(u). .На рис.2 показано смещение u В с измен-ем темп-ры, при этом площадь под графиком остается постоянной и равной 1, что следует из условия нормировки функции Максвелла . Знание функции распределения молекул газа по скоростям позволяет вычислять средние значения любых функций скорости, в частности средней арифметической скорости . .

Больцман

Тепловое движ-е частиц тела приводит к тому, что положение их в пространстве изменяется случайным образом. Поэтому можно ввести функцию распределения частиц по координатам, определяющую вероятность обнаружения частицы в том или ином месте пространства. где -плотность вероятности т.е. вероятность обнаружения частицы в единичном объеме вблизи точки с радиус-вектором r. При отсутствии внешних силовых полей существует равномерное распределение частиц идеального газа по координатам, при этом функция распределения ,где n-концентрация частиц, N-полное число частиц газа.Если внешнее силовое поле является потенциальным, то концентрация частиц вблизи точки пространства с радиус-вектором r , зависит от потенциальной энергии частиц в данном месте. где n o -концентрация частиц в том месте, где E p =0.В этом случае вероятность .Этот закон называется распределением Больцмана . Для идеального газа давление связано с концентрацией соотношением Р=nkT. В поле земного тяготения концентрация изменяется с высотой над поверхностью Земли и, если газ находится в равновесном состоянии при температуре Т, то измен-е давления с высотой происходит по закону .- барометрическая формула .

Распределение Максвелла (распределение молекул газа по скоростям). В равновесном состоянии параметры газа (давле­ние, объем и температура) остаются неизменными, однако микро­состояния - взаимное расположение молекул, их скорости - не­прерывно изменяются. Из-за огромного количества молекул прак­тически нельзя определить значения их скоростей в какой-либо момент, но возможно, считая скорость молекул непрерывной слу­чайной величиной, указать распределение молекул по скоростям.

Выделим отдельную молекулу. Хаотичность движения позволяет, например, для проекции скорости x молекулы принять нормальный закон распределения. В этом случае, как показал Дж. К. Максвелл, плотность вероятности записывается следующим образом:

где т 0 - масса молекулы, Т - термодинамическая температура газа, k - постоянная Больцмана.

Аналогичные выражения могут быть получены для f ( у ) иf ( z ).

На основании формулы (2.15) можно записать вероятность то­го, что молекула имеет проекцию скорости, лежащую в интервалеот x до x + d х :

аналогично для других осей

Каждое из условий (2.29) и (2.30) отражает независимое событие. Поэтому вероятность того, что молекула имеет скорость, проекции которой одновременно удовлетворяют всем условиям, можно найти по теореме умножения вероятностей [см. (2.6)]:

Используя (2.28), из (2.31) получаем:

Отметим, что из (2.32) можно получить максвелловскую функ­цию распределения вероятностей абсолютных значений скорости (распределение Максвелла по скоростям):

(2.33)

и вероятность того, что скорость молекулы имеет значение, лежа­щее в интервале от до + d :

График функции (2.33) изображен на рисунке 2.5. Скорость, соответствующую максимуму кривой Максвелла, называют наивероятнейшей в. Ее можно определить, используя условие максимума функции:

или

Среднюю скорость молекулы (математическое ожидание) мож­но найти по общему правилу [см. (2.20)]. Так как определяется среднее значение скорости, то пределы интегрирования берут от 0 до  (математические подробности опущены):

где М = т 0 N A - молярная масса газа, R = k N A - универсальная газовая постоянная, N A - число Авогадро.

При увеличении температуры максимум кривой Максвелла смещается в сторону больших скоростей и распределение молекулпо видоизменяется (рис. 2.6; Т 1 < Т 2 ). Распределение Максвелла позволяет вычислить число моле­кул, скорости которых лежат в определенном интервале. Полу­чим соответствующую формулу.

Так как общее число N молекул в газе обычно велико, то веро­ятность dP может быть выражена как отношение числа dN моле­кул, скорости которых заключены в некотором интервале d , к общему числу N молекул:

Из (2.34) и (2.37) следует, что

Формула (2.38) позволяет определить число молекул, скорости которых лежат в интервале от и: до i> 2 . Для этого нужно проинтег­рировать (2.38):

либо графически вычислить площадь криволинейной трапеции в пределах от 1 до 2 (рис. 2.7).

Если интервал скоростей d достаточно мал, то число молекул, скорости которых соответствуют этому интервалу, может быть рассчитано приближенно по формуле (2.38) или графически как площадь прямоугольника с основаниемd .

На вопрос, сколько молекул имеют скорость, равную како­му-либо определенному значению, следует странный, на первый взгляд, ответ: если совершенно точно задана скорость, то интер­вал скоростей равен нулю(d = 0) и из (2.38) получаем нуль, т. е. ни одна молекула не имеет скорости, точно равной наперед задан­ной. Это соответствует одному из положений теории вероятнос­тей: для непрерывной случайной величины, каковой является скорость, невозможно «угадать» совершенно точно ее значение, которое имеет по крайней мере хотя бы одна молекула в газе.

Распределение молекул по скоростям подтверждено различны­ми опытами.

Распределение Максвелла можно рассматривать как распреде­ление молекул не только по скоростям, но и по кинетическим энергиям (так как эти понятия взаимосвязаны).

Распределение Больцмана. Если молекулы находятся в ка­ком-либо внешнем силовом поле, например гравитационном поле Земли, то можно найти распределение по их потенциальным энергиям, т. е. установить концентрацию частиц, обладающих не­которым определенным значением потенциальной энергии.

Распределение частиц по потенциальным энергиям в си­ ловых полях -гравитационном, электрическом и др. -называют распределением Больцмана.

Применительно к гравитационному полю это распределение может быть записано в виде зависимости концентрации п моле­кул от высотыh над уровнем Земли или от потенциальной энер­гии молекулы mgh :

Выражение (2.40) справедливо для частиц идеального газа. Графи­чески эта экспоненциальная зависимость изображена на рис. 2.8.


Такое распределение молекул в поле тяготения Земли можно ка­чественно, в рамках молекулярно-кинетических представлений, объяснить тем, что на молекулы оказывают влияние два противо­положных фактора: гравитационное поле, под действием которого все молекулы притягиваются к Земле, и молекулярно-хаотическоедвижение, стремящееся равномерно разбросать молекулы по всему возможному объему.

В заключение полезно заметить некоторое сходство экспонен­циальных членов в распределениях Максвелла и Больцмана:

В первом распределении в показателе степени отношение кине­тической энергии молекулы к kT , во втором - отношение потен­циальной энергии к kT .


Распределения Максвелла и Больцмана. Явления переноса

План лекции:

    Закон Максвелла о распределении молекул по скоростям. Характерные скорости молекул.

    Распределение Больцмана.

    Средняя длина свободного пробега молекул.

    Явления переноса:

а).диффузия;

б).внутреннее трение (вязкость);

в).теплопроводность.

    Закон Максвелла о распределении молекул по скоростям. Характерные скорости молекул.

Молекулы газа движутся хаотически и в результате столкновений скорости их меняются по величине и направлению в газе имеются молекулы как с очень большими, так и с очень малыми скоростями. Можно поставить вопрос о числе молекул, скорости которых лежат в интервале от и для газа в состоянии термодинамического равновесия в отсутствии внешних силовых полей. В этом случае устанавливается некоторое стационарное, не меняющееся со временем распределение молекул по скоростям, которое подчиняется статистическому закону, теоретически выведенному Максвеллом.

Чем больше общее число молекул N, тем большее число молекул N будет обладать скоростями в интервале от и;чем больше интервал скоростей , тем у большего числа молекул значение скоростей будет лежать в указанном интервале.

Введем коэффициент пропорциональности f( .

, 

где f( называется функцией распределения, которая зависит от скорости молекул и характеризует распределение молекул по скоростям.

Если вид функции известен, можно найти число молекул , скорости которых лежат в интервале от до.

С помощью методов теории вероятности и законов статистики Максвелл в 1860г. теоретически получил формулу, определяющую число молекул , обладающих скоростями в интервале от до.

, (2)

- распределение Максвелла показывает, какая доля общего числа молекул данного газа обладает скоростями в интервале от до.

Из уравнений  и  следует вид функции 

- (3)

функция распределения молекул идеального газа по скоростям.

Из (3) видно, что конкретный вид функции зависит от рода газа (от массы молекулы m 0 ) и температуры.

Наиболее часто закон распределения молекул по скоростям записывают в виде:

График функции асимметричен (рис. 1). Положение максимума характеризует наиболее часто встречающуюся скорость, которая называется наиболее вероятной. Скорости, превышающие в , встречаются чаще, чем меньшие скорости.

- доля общего числа молекул, обладающих скоростями в этом интервале.

S общ. = 1.

С повышением температуры максимум распределения сдвигается в сторону больших скоростей, а кривая становится более пологой, однако площадь под кривой не изменяется, т.к. S общ. = 1 .

Наиболее вероятной называют скорость, близкой к которой оказываются скорости большинства молекул данного газа.

Для её определения исследуем на максимум.

4,

Ранее было показано, что

, ,

 .

В МКТ используют также понятие средней арифметической скорости поступательного движения молекул идеального газа.

- равна отношению суммы модулей скоростей всех молекул к

числу молекул.

.

Из сравнения видно (рис.2), что наименьшей является в .

    Распределение Больцмана.

Два фактора - тепловое движение молекул и наличие поле тяготения Земли приводят газ в состояние, при котором его концентрация и давление убывают с высотой.

Если бы не было теплового движения молекул атмосферного воздуха, то все они сосредоточились бы у поверхности Земли. Если бы не было тяготения, то частицы атмосферы рассеялись бы по всей Вселенной. Найдем закон изменения давления с высотой.

Давление столба газа определяется формулой.

Поскольку с увеличением высоты давление уменьшается,

где плотность газа на высоте h .

Найдем p из уравнения Менделеева- Клапейрона

или.

Проведем расчет для изотермической атмосферы, считая, что Т= const (не зависит от высоты).

.

при h=0 , , ,

, , ,

Барометрическая формула, определяет давление газа на любой высоте.

Получим выражение для концентрации молекул на любой высоте.

где - потенциальная энергия молекулы на высоте h .

Распределение Больцмана во внешнем потенциальном поле.

Следовательно, распределение молекул по высоте есть их распределение по энергиям. Больцман доказал, что это распределение справедливо не только в случае потенциального поля сил земного тяготения, но и в любом потенциальном поле сил для совокупности любых одинаковых частиц, находящихся в состоянии хаотического теплового движения.

Из распределения Больцмана следует, что молекулы располагаются с большей концентрацией там, где их потенциальная энергия меньше.

Распределение Больцмана - распределение частиц в потенциальном силовом поле.

    Средняя длина свободного пробега молекул.

Вследствие хаотического теплового движения молекулы газа непрерывно сталкиваются друг с другом, проходят сложный зигзагообразный путь. Между 2-мя столкновениями молекулы движутся равномерно прямолинейно.

Минимальное расстояние, на которое сближаются центры 2-х молекул при соударении, называется эффективным диаметром молекулы d (рис. 4).

Величина называется эффективным сечением молекулы.

Найдем среднее число столкновений молекулы однородного газа в единицу времени. Столкновение произойдёт, если центры молекул сблизятся на расстояние, меньшее или равное d . Предполагаем, что молекула движется со скоростью , а остальные молекулы покоятся. Тогда число столкновений определяется числом молекул, центры которых находятся в объёме, представляющем собой цилиндр с основанием и высотой, равной пути, пройденном молекулой за 1с, т.е. .

В действительности все молекулы движутся, и возможность столкновения 2-х молекул определяет их относительная скорость. Можно показать, что если для скоростей молекул принято распределение Максвелла, .

.

Для большинства газов при нормальных условиях

.

Средняя длина свободного пробега - это среднее расстояние, которое проходит молекула между двумя последовательными соударениями. Оно равно отношению пройденного за время t пути к числу соударений за это время.

Мы установили функцию, описывающую распределение молекул по скоростям (распределение Максвелла), и зависимость, характеризующую распределение молекул по значениям потенциальной энергии (распределение Больцмана). Обе зависимости можно объединить в одно обобщенное распределение.

Рассмотрим бесконечно малый объем dV газа, расположенный в точке с радиусом-вектором в большой системе, представляющей идеальный газ при постоянной температуре во внешних силовых полях. Число молекул в выделенном объеме есть n( ) d 3 r. Поскольку объем невелик, в его пределах плотность частиц можно считать постоянной. Это означает, что выполнено условие справедливости распределения Максвелла. Тогда для числа молекул dN , имеющих скорости от v до v + dv и находящихся в объеме d 3 r , в результате объединения зависимостей (3.11) и (3.27), получаем следующую формулу:

Но концентрация молекул n(r) зависит от расположения этого объема во внешних силовых полях:

где n 0 - концентрация молекул в точке, где Е p = 0 . Тогда

Поскольку выражение

представляет собой полную энергию частицы во внешнем потенциальном силовом поле, мы приходим к обобщенному распределению Максвелла - Больцмана по энергиям молекул:

где N - полное число частиц в системе, a dN - число частиц с координатами между r и r + dr и (одновременно) со скоростями между v и v + dv.

Средняя энергия квантового осциллятора. Распределение Максвелла - Больцмана было получено в классической физике, но оно оказалось справедливым и в квантовой механике, где были подвергнуты пересмотру многие казавшиеся незыблемыми положения. В качестве примера рассмотрим задачу о грузе массой т, закрепленном на конце пружинки с жесткостью k. Уравнение движения хорошо известно, и его решением являются гармонические колебания тела с круговой частотой

Классическая энергия системы, моделирующей колебания атомов в молекуле дается формулой (3.62) и может принимать любые значения в зависимости от амплитуды колебаний. Как нам известно из квантовой механики, энергия колебаний квантуется , то есть принимает дискретный ряд значений, определяемых формулой:

В соответствии с общими принципами статистической физики вероятность Р n найти осциллятор в состоянии, характеризуемом неким значением n колебательного квантового числа, определяется формулой

где А - нормировочная постоянная. Для ее определения надо воспользоваться условием нормировки вероятности

Для этого в известную формулу для геометрической прогрессии

подставим значение

Получаем тогда вместо (2)

откуда следует выражение для постоянной А. Используя его в выражении (1), приходим к вероятности

Видно, что чем больше значение квантового числа n, тем меньше вероятность обнаружить осциллятор в таком состоянии. Чем выше температура, тем большие значения n становятся практически значимыми для системы. При

к нулю стремятся все вероятности Р n с n > 1 , и лишь

Иными словами, при нулевой температуре нет тепловых возбуждений, и осциллятор совершает «нулевые колебания» - находится в основном состоянии с наименьшей энергией

Распределение осцилляторов по энергиям в зависимости от температуры системы показано на рис. 3.9

Рис. 3.9. Примерное распределение N = 30 квантовых осцилляторов по энергетическим уровням в зависимости от температуры. Показаны только основной и пять первых возбужденных уровней энергии. При Т = 0 все осцилляторы находятся в основном состоянии. По мере роста температуры становятся доступными все более высокие энергии, и распределение осцилляторов по уровням становится все более равномерным

Для наглядности мы взяли систему из небольшого (N = 30 ) числа осцилляторов (строго говоря, статистические законы применимы к системам с гораздо большим числом частиц).

Возникает вопрос: каково среднее значение колебательного квантового числа n при некоторой температуре T ? Для ответа мы должны подсчитать сумму:

Чтобы сделать это, продифференцируем по q обе части равенства (3.67) для геометрической прогрессии:

откуда получаем

Используя (7) при

получаем из (6) выражение для искомого среднего

Теперь легко получить среднюю энергию осциллятора

где функция cth - гиперболический котангенс определена соотношением

На рис. 3.10 сплошной линией изображена средняя энергия квантового осциллятора, измеренная в единицах ħω ,

в зависимости от «безразмерной температуры»

Рис. 3.10. Средняя энергия квантового осциллятора в зависимости от температуры

Пунктирная линия

соответствует результату классической физики. Действительно, энергия

приходящаяся на одну степень свободы, является средним значением как кинетической, так и потенциальной энергий классического осциллятора, так что среднее значение полной энергии как раз равно

Видно, что квантовые поправки важны при низких температурах: при q < 0,3 средняя энергия осциллятора близка к энергии основного состояния ħω/2 . В таком случае говорят, что колебательные степени свободы «заморожены», то есть тепловой энергии недостаточно для возбуждения колебаний. Но уже при q = 2 обе энергии практически совпадают, то есть квантовые поправки малы. Значение q = 1 можно принять за условную границу между квантовой и классическими областями. Ее смысл прозрачен: при

тепловая энергия равна минимальной энергии возбуждения осциллятора, то есть разности между энергией

первого возбужденного состояния и энергией

основного состояния осциллятора.

Какие же температуры можно считать низкими для осциллятора, моделирующего реальную систему, например молекулу водорода Н 2 ? Характерные частоты молекулярных колебаний располагаются обычно в инфракрасной области и имеют порядок n = 10 14 Гц . Этому соответствуют энергия

и температура

Средняя энергия квантового ротатора. Таким образом, привычные для нас комнатные температуры оказываются достаточно низкими с точки зрения возбуждения колебаний молекул. Посмотрим, что происходит с молекулами при температурах Т < Т К0Л. Так как колебания отсутствуют, двухатомную молекулу можно представить в виде «гантели» - двух атомов, жестко соединенных между собой. Такая система называется ротатором и, как мы видели ранее, имеет пять степеней свободы - три поступательных (движение центра масс) и две вращательных. Энергия вращательного движения классического ротатора имеет вид (3.61). Учитывая связь

между угловой частотой вращения ω , моментом инерции I и моментом импульса L, записываем классическую энергию вращения молекулы как

В квантовой механике квадрат момента импульса квантуется,

Здесь J - ротационное квантовое число, поэтому квантуется и энергия вращательного движения молекулы

Используя это соотношение и распределение Максвелла - Больцмана, можно получить выражение для средней энергии квантового ротатора. Однако в этом случае формулы достаточно сложны, и мы ограничимся качественными результатами. При высоких температурах средняя энергия стремится к классическому значению k B Т, соответствующему двум степеням свободы (вращение вокруг двух ортогональных осей). При низких температурах ротатор будет находиться в основном состоянии, соответствующем значению J = 0 (отсутствие вращения). «Переход» между двумя этими предельными случаями осуществляется, очевидно, при такой температуре Т ВР когда тепловое движение способно возбудить вращательные степени свободы. Минимальная (отличная от нуля) энергия вращения равна

как это следует из формулы для Е ВР при J = 1 . Поэтому

Для момента инерции молекулы можно принять оценку

где m р = 1,67 ·10 –27 кг (масса протона), а а В = 5·10 –11 м - радиус Бора. Получаем тогда

Полученные оценки подтверждаются измерениями молярной теплоемкости при постоянном объеме с nV , которые мы уже обсуждали в предыдущей главе. При температурах ниже 100 К в тепловом движении участвуют только поступательные степени свободы молекулы. Средняя энергия молекулы равна 3kBТ/2, а энергия одного моля - 3N A k B T/2=3RT/2, откуда следует выражение для теплоемкости с nV = 3R/2. В диапазоне температур от 100 К до 200 К молярная теплоемкость увеличивается до значения с nV = 5R/2, что свидетельствует о «размораживании» двух дополнительных (вращательных) степеней свободы (то есть о добавлении k B T энергии на молекулу). В районе температур от 4 000 К до 5 000 К молярная теплоемкость снова увеличивается, на этот раз до значения с nV = 7R/2 . Это «разморозилась» колебательная степень свободы, что принесло дополнительную энергию k B T на молекулу.

Скорость химических реакций. У химиков есть эмпирическое правило, что при повышении температуры на 10 °С скорость реакции удваивается. Это - всего лишь грубое обобщение, из него есть множество исключений, но все же в целом оно более или менее верно. Объяснение можно и здесь дать на основе распределения Максвелла - Больцмана.

Для протекания многих химических реакций необходимо, чтобы энергия участвующих в них частиц превышала некое пороговое значение, которое мы обозначим Е 0 . Т 2 = 310 К это отношение равно Е 0 /k B Т 2 = 14,0 . Числа частиц, участвующих в реакции, определяются соотношениями

Действительно, повышение температуры всего на 10 градусов привело к увеличению на 60 % числа частиц, энергия которых превышает пороговое значение.