Как обозначается фаза колебаний в физике. Что значит "фаза колебаний"

Колебательные процессы - важный элемент современной науки и техники, поэтому их изучению всегда уделялось внимание, как одной из “вечных” проблем. Задача любого знания - не простое любопытство, а использование его в повседневной жизни. А для этого существуют и ежедневно появляются новые технические системы и механизмы. Они находятся в движении, проявляют свою сущность, выполняя какую-нибудь работу, либо, будучи неподвижными, сохраняют потенциальную возможность при определенных условиях перейти в состояние движения. А что есть движение? Не углубляясь в дебри, примем простейшее толкование: изменение положения материального тела относительно любой системы координат, которую условно считают неподвижной.

Среди огромного количества возможных вариантов движения особый интерес представляет колебательное, которое отличается тем, что система повторяет изменение своих координат (или физических величин) через определенные промежутки времени - циклы. Такие колебания называются периодическими или циклическими. Среди них выделяют отдельным классом у которых характерные признаки (скорость, ускорение, положение в пространстве и т.д.) изменяются во времени по гармоническому закону, т.е. имеющему синусоидальный вид. Замечательным свойством гармонических колебаний является то, что их комбинация представляет любые другие варианты, в т.ч. и негармонические. Очень важным понятием в физике является “фаза колебаний”, которое означает фиксацию положения колеблющегося тела в некоторый момент времени. Измеряется фаза в угловых единицах - радианах, достаточно условно, просто как удобный прием для объяснения периодических процессов. Другими словами, фаза определяет значение текущего состояния колебательной системы. Иначе и быть не может - ведь фаза колебаний является аргументом функции, которая описывает эти колебания. Истинное значение фазы для движения колебательного характера может означать координаты, скорость и другие физические параметры, изменяющиеся по гармоническому закону, но общим для них является временная зависимость.

Продемонстрировать, колебаний, совсем не сложно - для этого понадобится простейшая механическая система - нить, длиной r, и подвешенная на ней “материальная точка” - грузик. Закрепим нить в центре прямоугольной системы координат и заставим наш “маятник” крутиться. Допустим, что он охотно это делает с угловой скоростью w. Тогда за время t угол поворота груза составит φ = wt. Дополнительно в этом выражении должна быть учтена начальная фаза колебаний в виде угла φ0 - положение системы перед началом движения. Итак, полный угол поворота, фаза, вычисляется из соотношения φ = wt+ φ0. Тогда выражение для гармонической функции, а это проекция координаты груза на ось Х, можно записать:

x = А * cos(wt + φ0), где А - амплитуда колебания, в нашем случае равная r - радиусу нити.

Аналогично такая же проекция на ось Y запишется следующим образом:

у = А * sin(wt + φ0).

Следует понимать, что фаза колебаний означает в данном случае не меру поворота “угол”, а угловую меру времени, которая выражает время в единицах угла. За это время груз совершает поворот на некоторый угол, который можно однозначно определить, исходя из того, что для циклического колебания w = 2 * π /Т, где Т - период колебания. Следовательно, если одному периоду соответствует поворот на 2π радиан, то часть периода, время, можно пропорционально выразить углом как долей от полного поворота 2π.

Колебания не существуют сами по себе - звуки, свет, вибрация всегда являются суперпозицией, наложением, большого количества колебаний от разных источников. Безусловно, на результат наложения двух и более колебаний оказывают влияние их параметры, в т.ч. и фаза колебаний. Формула суммарного колебания, как правило, негармонического, при этом может иметь очень сложный вид, но от этого становится только интереснее. Как сказано выше, любое негармоническое колебание можно представить в виде большого числа гармонических с разной амплитудой, частотой и фазой. В математике такая операция называется “разложение функции в ряд” и широко используется при проведении расчетов, например, прочности конструкций и сооружений. Основой таких расчетов являются исследования гармонических колебаний с учетом всех параметров, в том числе и фазы.

4 Кинематическая связь между круговым движением и гармоническим колебательным движением. Пусть точка движется по окружности радиуса R с постоянной угловой скоростью ω. Тогда проекция x-радиус – вектора этой точки на горизонтальную ось OX (рис.11, а) выразится так:

Но α = ωt. Поэтому:

Это значит, что проекция точки, движущейся по окружности, на ось OX совершает гармонические колебания с амплитудой x m = R и циклической частотой ω. Это используется в так называемом кулисном механизме, предназначенном для преобразования вращательного движения в колебательное. Рассмотрим устройство кулисного механизма на простейшей его модели (рис.11б). На оси электродвигателя 1 укреплён кривошип 2, а на кривошипе – палец 3. При работе двигателя палец движется по окружности радиуса R. Палец вставлен в прорезь кулисы 4, которая может двигаться по направляющим 5. Поэтому палец давит на кулису и заставляет её смещаться то


вправо, то влево. Кулиса приходит в колебательное движение. Колебания кулисы – гармонические, так как прорезь в кулисе как бы проецирует движение пальца на горизонтальную ось.

Фаза колебаний. Разность фаз

1 Понятие фазы колебаний. Так как амплитудные значения смещения (x m), скорости (υ m) и ускорения(a m) при гармонических колебаниях постоянны, то мгновенные значения этих величин, как видно из формул смещения, скорости и ускорения, определяются значением аргумента

называемого фазой колебаний.

Таким образом, фазой колебания называется физическая величина, определяющая (при данной амплитуде) мгновенные значения смещения, скорости и ускорения.

Из формулы

x = x m sin ω 0 t

видно, что при t = 0 смещение x также равно нулю. Но всегда ли будет так?

Допустим для конкретности, что мы наблюдаем движение кулисного механизма, отсчитывая время по положению стрелки секундомера. В этом случае момент t= 0 есть момент пуска секундомера. Запись «x = 0 при t= 0» означает, что секундомер был пущен в один из тех моментов, когда кулиса находилась в среднем (нулевом) положении (рис. 12, а). В этом случае

x = x m sin ω 0 t

Предположим теперь, что секундомер был включен тогда, когда кулиса уже сместилась на расстояние x’ (рис. 12, б). В этом случае смещение кулисы через промежуток времени t, отмеченный секундомером, определится формулой

x = x m sin ω 0 (t + t ")

где t " – время, необходимое на смещение кулисы на величину x’.


Преобразуем эту формулу

x = x m sin (ω 0 t + ω 0 t "),

x = x m sin (ω 0 t + φ 0),

где φ 0 = ω 0 t- начальная фаза колебаний. Мы видим, что начальная фаза зависит от выбора начала отсчёта времени. Если начало отсчёта времени ведётся с момента, когда смещение равно нулю(x = 0), то начальная фаза равна нулю. Изменение мгновенного значения

смещения в этом случае описывается формулой

x = x m sin ω 0 t

Если же за начало отсчёта времени берётся момент, когда изменяющееся смещение достигло наибольшего значения x = x m , то начальная фаза равна π/2 и изменение мгновенного значения смещения описывается формулой

x = x m sin (ω 0 t + ) = x m sin ω 0 t

2 Разность фаз двух гармонических колебаний. Возьмём два одинаковых маятника. Подтолкнув маятники в разные моменты времени t 1 и t 2 , запишем осциллограммы их колебаний (рисунок 13). Анализ осциллограмм показывает, что колебания маятников имеют одинаковую частоту, но не совпадают по фазе. Колебания первого маятника опережают колебания второго маятника на одну и ту же постоянную величину.

Уравнения колебаний маятников запишутся так:

x 1 = x m sin (ω 0 t + φ 1),

x 2 = x m sin (ω 0 t + φ 2)

Величина φ 1 -φ 2 – называется разностью фаз или сдвигом фаз.


Из осциллограммы видно, что перенос начала отсчёта времени не изменяет разности фаз. Следовательно, разность фаз гармонических колебательных движений, имеющих одинаковую частоту, не зависит от выбора начала отсчёта времени. На рисунке 14 представлены графики смещения, скорости и ускорения для одного и того же гармонически колеблющегося тела. Как видно из рисунка, колебания этих величин происходят с различными начальными фазами.

Фа́за колеба́ний полная - аргумент периодической функции, описывающей колебательный или волновой процесс.

Фаза колебаний начальная - значение фазы колебаний (полной) в начальный момент времени, т.е. при t = 0 (для колебательного процесса), а также в начальный момент времени в начале системы координат, т.е. при t = 0 в точке (x , y , z ) = 0 (для волнового процесса).

Фаза колебания (в электротехнике) - аргумент синусоидальной функции (напряжения, тока), отсчитываемый от точки перехода значения через нуль к положительному значению.

Фаза колебания - гармоническое колебание ( φ ) .

Величину φ, стоящую под знаком функции косинуса или синуса, называют фазой колебаний , описываемой этой функцией.

φ = ω៰ t

Как правило, о фазе говорят применительно к гармоническим колебаниям или монохроматическим волнам. При описании величины, испытывающей гармонические колебания, используется, например, одно из выражений:

A cos ⁡ (ω t + φ 0) {\displaystyle A\cos(\omega t+\varphi _{0})} , A sin ⁡ (ω t + φ 0) {\displaystyle A\sin(\omega t+\varphi _{0})} , A e i (ω t + φ 0) {\displaystyle Ae^{i(\omega t+\varphi _{0})}} .

Аналогично, при описании волны, распространяющейся в одномерном пространстве, например, используются выражения вида:

A cos ⁡ (k x − ω t + φ 0) {\displaystyle A\cos(kx-\omega t+\varphi _{0})} , A sin ⁡ (k x − ω t + φ 0) {\displaystyle A\sin(kx-\omega t+\varphi _{0})} , A e i (k x − ω t + φ 0) {\displaystyle Ae^{i(kx-\omega t+\varphi _{0})}} ,

для волны в пространстве любой размерности (например, в трехмерном пространстве):

A cos ⁡ (k ⋅ r − ω t + φ 0) {\displaystyle A\cos(\mathbf {k} \cdot \mathbf {r} -\omega t+\varphi _{0})} , A sin ⁡ (k ⋅ r − ω t + φ 0) {\displaystyle A\sin(\mathbf {k} \cdot \mathbf {r} -\omega t+\varphi _{0})} , A e i (k ⋅ r − ω t + φ 0) {\displaystyle Ae^{i(\mathbf {k} \cdot \mathbf {r} -\omega t+\varphi _{0})}} .

Фаза колебаний (полная) в этих выражениях - аргумент функции, т.е. выражение, записанное в скобках; фаза колебаний начальная - величина φ 0 , являющаяся одним из слагаемых полной фазы. Говоря о полной фазе, слово полная часто опускают.

Колебания с одинаковыми амплитудами и частотами могут различаться фазами. Так как ω៰ = 2π/Т , то φ = ω៰t = 2π t/Т.

Отношение t/Т указывает, сколько периодов прошло от момента начала колебаний. Любому значению времени t , выраженному в числе периодов Т , соответствует значение фазы φ , выраженное в радианах. Так, по прошествии времени t = Т/4 (четверти периода) φ=π/2 , по прошествии половины периода φ = π/2 , по прошествии целого периода φ=2 π и т.д.

Поскольку функции sin(…) и cos(…) совпадают друг с другом при сдвиге аргумента (то есть фазы) на π / 2 , {\displaystyle \pi /2,} то во избежание путаницы лучше пользоваться для определения фазы только одной из этих двух функций, а не той и другой одновременно. По обычному соглашению фазой считают аргумент косинуса , а не синуса .

То есть, для колебательного процесса (см. выше) фаза (полная)

φ = ω t + φ 0 {\displaystyle \varphi =\omega t+\varphi _{0}} ,

для волны в одномерном пространстве

φ = k x − ω t + φ 0 {\displaystyle \varphi =kx-\omega t+\varphi _{0}} ,

для волны в трехмерном пространстве или пространстве любой другой размерности:

φ = k r − ω t + φ 0 {\displaystyle \varphi =\mathbf {k} \mathbf {r} -\omega t+\varphi _{0}} ,

где ω {\displaystyle \omega } - угловая частота (величина, показывающая, на сколько радиан или градусов изменится фаза за 1 с; чем величина выше, тем быстрее растет фаза с течением времени); t - время ; φ 0 {\displaystyle \varphi _{0}} - начальная фаза (то есть фаза при t = 0); k - волновое число ; x - координата точки наблюдения волнового процесса в одномерном пространстве; k - волновой вектор ; r - радиус-вектор точки в пространстве (набор координат, например, декартовых).

В приведенных выше выражениях фаза имеет размерность угловых единиц (радианы , градусы). Фазу колебательного процесса по аналогии с механическим вращательным также выражают в циклах , то есть долях периода повторяющегося процесса:

1 цикл = 2 π {\displaystyle \pi } радиан = 360 градусов.

В аналитических выражениях (в формулах) преимущественно (и по умолчанию) используется представление фазы в радианах, представление в градусах также встречается достаточно часто (по-видимому, как предельно явное и не приводящее к путанице, поскольку знак градуса не принято никогда опускать ни в устной речи, ни в записях). Указание фазы в циклах или периодах (за исключением словесных формулировок) в технике сравнительно редко.

Иногда (в квазиклассическом приближении , где используются квазимонохроматические волны, т.е. близкие к монохроматическим, но не строго монохроматические) а также в формализме интеграла по траекториям , где волны могут быть и далекими от монохроматических, хотя всё же подобны монохроматическим) рассматривается фаза, являющаяся нелинейной функцией времени t и пространственных координат r , в принципе - произвольная функция .

Но т.к. витки сдвинуты в пространстве, то наводимая в них ЭДС будет достигать амплитудных и нулевых значений не одновременно.

В начальный момент времени ЭДС витка будет:

В этих выражениях углы и называются фазными , или фазой . Углы и называются начальной фазой . Фазный угол определяет значение ЭДС в любой момент времени, а начальная фаза определяет значение ЭДС в начальный момент времени.

Разность начальных фаз двух синусоидальных величин одинаковой частоты и амплитуды называется углом сдвига фаз

Разделив угол сдвига фаз на угловую частоту, получим время, прошедшее с начала периода:

Графическое изображение синусоидальных величин

U = (U 2 a + (U L - U c) 2)

Таким образом, из-за наличия угла сдвига фаз напряжение U всегда меньше алгебраической суммы U a + U L + U C . Разность U L - U C = U p называется реактивной составляющей напряжения .

Рассмотрим, как изменяются ток и напряжение в последовательной цепи переменного тока.

Полное сопротивление и угол сдвига фаз. Если подставить в формулу (71) значения U a = IR; U L = lL и U C =I/(C), то будем иметь: U = ((IR) 2 + 2), откуда получаем формулу закона Ома для последовательной цепи переменного тока:

I = U / ((R 2 + 2)) = U / Z (72)

где Z = (R 2 + 2) = (R 2 + (X L - X c) 2)

Величину Z называют полным сопротивлением цепи , оно измеряется в омах. Разность L — l/(C) называют реактивным сопротивлением цепи и обозначают буквой X. Следовательно, полное сопротивление цепи

Z = (R 2 + X 2)

Соотношение между активным, реактивным и полным сопротивлениями цепи переменного тока можно также получить по теореме Пифагора из треугольника сопротивлений (рис. 193). Треугольник сопротивлений А’В’С’ можно получить из треугольника напряжений ABC (см. рис. 192,б), если разделить все его стороны на ток I.

Угол сдвига фаз определяется соотношением между отдельными сопротивлениями, включенными в данную цепь. Из треугольника А’В’С (см. рис. 193) имеем:

sin ? = X / Z; cos? = R / Z; tg? = X / R

Например, если активное сопротивление R значительно больше реактивного сопротивления X, угол сравнительно небольшой. Если в цепи имеется большое индуктивное или большое емкостное сопротивление, то угол сдвига фаз возрастает и приближается к 90°. При этом, если индуктивное сопротивление больше емкостного, напряжение и опережает ток i на угол; если же емкостное сопротивление больше индуктивного, то напряжение и отстает от тока i на угол.

Идеальная катушка индуктивности, реальная катушка и конденсатор в цепи переменного тока.

Реальная катушка в отличии от идеальной имеет не только индуктивность, но и активное сопротивление, поэтому при протекании переменного тока в ней сопровождается не только изменением энергии в магнитном поле, но и преобразованием электрической энергии в другой вид. В частности, в проводе катушки электрическая энергия преобразуется в тепло в соответствии с законом Ленца — Джоуля .

Ранее было выяснено, что в цепи переменного тока процесс преобразования электрической энергии в другой вид характеризуется активной мощностью цепи Р , а изменение энергии в магнитном поле — реактивной мощностью Q .

В реальной катушке имеют место оба процесса, т. е. ее активная и реактивная мощности отличны от нуля. Поэтому одна реальная катушка в схеме замещения должна быть представлена активным и реактивным элементами.