Какие цифры не делятся. Основные признаки делимости

Существуют признаки, по которым иногда легко узнать, не производя деления на самом деле, делится или не делится данное число на некоторые другие числа.

Числа, которые делятся на 2, называют чётными . Число нуль тоже относится к чётным числам. Все остальные числа называют нечётными :

0, 2, 4, 6, 8, 10, 12, ... - чётные,
1, 3, 5, 7, 9, 11, 13, ... - нечётные.

Признаки делимости

Признак делимости на 2 . Число делится на 2, если его последняя цифра чётная. Например, число 4376 делится на 2, так как последняя цифра (6) - чётная.

Признак делимости на 3 . На 3 делятся только те числа, у которых сумма цифр делится на 3. Например, число 10815 делится на 3, так как сумма его цифр 1 + 0 + 8 + 1 + 5 = 15 делится на 3.

Признаки делимости на 4 . Число делится на 4, если две последние его цифры нули или образуют число, которое делится на 4. Например, число 244500 делится на 4, так как оно оканчивается двумя нулями. Числа 14708 и 7524 делятся на 4, так как две последние цифры этих чисел (08 и 24) делятся на 4.

Признаки делимости на 5 . На 5 делятся те числа, которые оканчиваются на 0 или 5. Например, число 320 делится на 5, так как последняя цифра 0.

Признак делимости на 6 . Число делится на 6, если оно делится одновременно на 2 и на 3. Например, число 912 делится на 6, так как оно делится и на 2 и на 3.

Признаки делимости на 8 . На 8 делятся те числа, у которых три последние цифры являются нулями или образуют число, которое делится на 8. Например, число 27000 делится на 8, так как оно оканчивается тремя нулями. Число 63128 делится на 8, так как три последние цифры образуют число (128), которое делится на 8.

Признак делимости на 9 . На 9 делятся только те числа, у которых сумма цифр делится на 9. Например, число 2637 делится на 9, так как сумма его цифр 2 + 6 + 3 + 7 = 18 делится на 9.

Признаки делимости на 10, 100, 1000 и т. д. На 10, 100, 1000 и так далее делятся те числа, которые оканчиваются соответственно одним нулём, двумя нулями, тремя нулями и так далее. Например, число 3800 делится на 10 и на 100.

Приступим к рассмотрению темы «Признак делимости на 3 ». Начнем с формулировки признака, приведем доказательство теоремы. Затем рассмотрим основные подходы к установлению делимости на 3 чисел, значение которых задано некоторым выражением. В разделе приведен разбор решения основных типов задач, основанных на применении признака делимости на 3 .

Признак делимости на 3 , примеры

Формулируется признак делимости на 3 просто: целое число будет делиться на 3 без остатка, если сумма входящих в его состав цифр делится на 3 . Если суммарное значение всех цифр, которые входят в состав целого числа, на 3 не делится, то и само исходное число на 3 не делится. Получить сумму всех входящих в целое число цифр можно с помощью сложения натуральных чисел.

Теперь рассмотрим примеры применения признака делимости на 3 .

Пример 1

Делится ли на 3 число - 42 ?

Решение

Для того, чтобы ответить на этот вопрос, сложим все цифры, входящие в состав числа - 42: 4 + 2 = 6 .

Ответ: согласно признаку делимости, раз сумма цифр, входящих с восстав исходного числа, делится на три, то и само исходное число делится на 3 .

Для того, чтобы ответить на вопрос о том, делится ли на 3 число 0 , нам понадобится свойство делимости, согласно которому нуль делится на любое целое число. Получается, что нуль делится на три.

Существуют задачи, для решения которых прибегать в признаку делимости на 3 необходимо несколько раз.

Пример 2

Покажите, что число 907 444 812 делится на 3 .

Решение

Найдем сумму всех цифр, которые образуют запись исходного числа: 9 + 0 + 7 + 4 + 4 + 4 + 8 + 1 + 2 = 39 . Теперь нам нужно определить, делится ли на 3 число 39 . Еще раз складываем цифры, входящие в состав этого числа: 3 + 9 = 12 . Нам осталось провести сложение цифр еще раз для того, чтобы получить окончательный ответ: 1 + 2 = 3 . Число 3 делится на 3

Ответ: исходное число 907 444 812 также делится на 3 .

Пример 3

Делится ли на 3 число − 543 205 ?

Решение

Посчитаем сумму цифр, входящих в состав исходного числа: 5 + 4 + 3 + 2 + 0 + 5 = 19 . Теперь посчитаем сумму цифр полученного числа: 1 + 9 = 10 . Для того, чтобы получить окончательный ответ, найдем результат еще одного сложения: 1 + 0 = 1 .
Ответ: единица на 3 не делится, значит и исходное число на 3 не делится.

Для того, чтобы определить, делится ли данное число на 3 без остатка, мы можем провести деление данного числа на 3 . Если разделить число − 543 205 из рассмотренного выше примера столбиком на три, то в ответе мы не получим целого числа. Это точно также значит, что − 543 205 на 3 без остатка не делится.

Доказательство признака делимости на 3

Здесь нам понадобятся следующие навыки: разложение числа по разрядам и правило умножения на 10 , 100 и т.д. Для того, чтобы провести доказательство, нам необходимо получить представление числа a вида , где a n , a n − 1 , … , a 0 – это цифры, которые располагаются слева направо в записи числа.

Приведем пример с использованием конкретного числа: 528 = 500 + 20 + 8 = 5 · 100 + 2 · 10 + 8 .

Запишем ряд равенств: 10 = 9 + 1 = 3 · 3 + 1 , 100 = 99 + 1 = 33 · 3 + 1 , 1 000 = 999 + 1 = 333 · 3 + 1 и проч.

А теперь подставим эти равенства вместо 10 , 100 и 1000 в равенства, приведенные ранее a = a n · 10 n + a n - 1 · 10 n - 1 + … + a 2 · 10 2 + a 1 · 10 + a 0 .

Так мы пришли к равенству:

a = a n · 10 n + … + a 2 · 100 + a 1 · 10 + a 0 = = a n · 33 . . . . 3 · 3 + 1 + … + a 2 · 33 · 3 + 1 + a 1 · 3 · 3 + 1 + a 0

А теперь применим свойства сложения и свойства умножения натуральных чисел для того, чтобы переписать полученное равенство следующим образом:

a = a n · 33 . . . 3 · 3 + 1 + . . . + + a 2 · 33 · 3 + 1 + a 1 · 3 · 3 + 1 + a 0 = = 3 · 33 . . . 3 · a n + a n + . . . + + 3 · 33 · a 2 + a 2 + 3 · 3 · a 1 + a 1 + a 0 = = 3 · 33 . . . 3 · a n + . . . + + 3 · 33 · a 2 + 3 · 3 · a 1 + + a n + . . . + a 2 + a 1 + a 0 = = 3 · 33 . . . 3 · a n + … + 33 · a 2 + 3 · a 1 + + a n + . . . + a 2 + a 1 + a 0

Выражение a n + . . . + a 2 + a 1 + a 0 - это сумма цифр исходного числа a . Введем для нее новое краткое обозначение А . Получаем: A = a n + . . . + a 2 + a 1 + a 0 .

В этом случае представление числа a = 3 · 33 . . . 3 · a n + . . . + 33 · a 2 + 3 · a 1 + A принимает такой вид, который нам будет удобно использовать для доказательства признака делимости на 3 .

Определение 1

Теперь вспомним следующие свойства делимости:

  • необходимым и достаточным условием для того, чтобы целое число a делилось на целое число
    ​​​​​​ b , является условие, по которому модуль числа a делится на модуль числа b ;
  • если в равенстве a = s + t все члены, кроме какого-то одного, делятся на некоторое целое число b , то и этот один член делится на b .

Мы заложили основу для того, чтобы провести доказательство признака делимости на 3 . Теперь же сформулируем этот признак в виде теоремы и докажем ее.

Теорема 1

Для того, чтобы утверждать, что целое число a делится на 3 , нам необходимо и достаточно, чтобы сумма цифр, которая образует запись числа a , делилась на 3 .

Доказательство 1

Если взять значение a = 0 , то теорема очевидна.

Если ы возьмем число a , отличное от нуля, то модуль числа a будет натуральным числом. Это позволяет нам записать следующее равенство:

a = 3 · 33 . . . 3 · a n + . . . + 33 · a 2 + 3 · a 1 + A , где A = a n + . . . + a 2 + a 1 + a 0 - сумма цифр числа a .

Так как сумма и произведение целых чисел есть целое число, то
33 . . . 3 · a n + . . . + 33 · a 2 + 3 · a 1 - целое число, тогда по определению делимости произведение 3 · 33 . . . 3 · a n + . . . + 33 · a 2 + 3 · a 1 делится на 3 при любых a 0 , a 1 , … , a n .

Если сумма цифр числа a делится на 3 , то есть, A делится на 3 , то в силу свойства делимости, указанного перед теоремой, a делится на 3 , следовательно, a делится на 3 . Так доказана достаточность.

Если a делится на 3 , то и a делится на 3 , тогда в силу того же свойства делимости число
A делится на 3 , то есть, сумма цифр числа a делится на 3 . Так доказана необходимость.

Другие случаи делимости на 3

Целые числа могут быть заданы как значение некоторого выражения, которое содержит переменную, при определенном значении этой переменной. Так, при некотором натуральном n значение выражения 4 n + 3 n - 1 является натуральным числом. В этом случае непосредственное деление на 3 не может дать нам ответ на вопрос, делится ли число на 3 . Применение признака делимости на 3 также может быть затруднено. Рассмотрим примеры таких задач и разберем методы их решения.

Для решения таких задач может быть применено несколько подходов. Суть одного из них заключается в следующем:

  • представляем исходное выражение как произведение нескольких множителей;
  • выясняем, может ли хотя бы один из множителей делиться на 3 ;
  • на основе свойства делимости делаем вывод о том, что все произведение делится на 3 .

В ходе решения часто приходится прибегать к использованию формулы бинома Ньютона.

Пример 4

Делится ли значение выражения 4 n + 3 n - 1 на 3 при любом натуральном n ?

Решение

Запишем равенство 4 n + 3 n - 4 = (3 + 1) n + 3 n - 4 . Применим формулу бинома Ньютона бинома Ньютона:

4 n + 3 n - 4 = (3 + 1) n + 3 n - 4 = = (C n 0 · 3 n + C n 1 · 3 n - 1 · 1 + . . . + + C n n - 2 · 3 2 · 1 n - 2 + C n n - 1 · 3 · 1 n - 1 + C n n · 1 n) + + 3 n - 4 = = 3 n + C n 1 · 3 n - 1 · 1 + . . . + C n n - 2 · 3 2 + n · 3 + 1 + + 3 n - 4 = = 3 n + C n 1 · 3 n - 1 · 1 + . . . + C n n - 2 · 3 2 + 6 n - 3

Теперь вынесем 3 за скобки: 3 · 3 n - 1 + C n 1 · 3 n - 2 + . . . + C n n - 2 · 3 + 2 n - 1 . Полученное произведение содержит множитель 3 , а значение выражения в скобках при натуральных n представляет собой натуральное число. Это позволяет нам утверждать, что полученное произведение и исходное выражение 4 n + 3 n - 1 делится на 3 .

Ответ: Да.

Также мы можем применить метод математической индукции.

Пример 5

Докажите с использованием метода математической индукции, что при любом натуральном
n значение выражения n · n 2 + 5 делится на 3 .

Решение

Найдем значение выражения n · n 2 + 5 при n = 1 : 1 · 1 2 + 5 = 6 . 6 делится на 3 .

Теперь предположим, что значение выражения n · n 2 + 5 при n = k делится на 3 . Фактически, нам придется работать с выражением k · k 2 + 5 , которое, как мы ожидаем, будет делиться на 3 .

Учитывая, что k · k 2 + 5 делится на 3 , покажем, что значение выражения n · n 2 + 5 при n = k + 1 делится на 3 , то есть, покажем, что k + 1 · k + 1 2 + 5 делится на 3 .

Выполним преобразования:

k + 1 · k + 1 2 + 5 = = (k + 1) · (k 2 + 2 k + 6) = = k · (k 2 + 2 k + 6) + k 2 + 2 k + 6 = = k · (k 2 + 5 + 2 k + 1) + k 2 + 2 k + 6 = = k · (k 2 + 5) + k · 2 k + 1 + k 2 + 2 k + 6 = = k · (k 2 + 5) + 3 k 2 + 3 k + 6 = = k · (k 2 + 5) + 3 · k 2 + k + 2

Выражение k · (k 2 + 5) делится на 3 и выражение 3 · k 2 + k + 2 делится на 3 , поэтому их сумма делится на 3 .

Так мы доказали, что значение выражения n · (n 2 + 5) делится на 3 при любом натуральном n .

Теперь разберем подход к доказательству делимости на 3 , которых основан на следующем алгоритме действий:

  • показываем, что значение данного выражения с переменной n при n = 3 · m , n = 3 · m + 1 и n = 3 · m + 2 , где m – произвольное целое число, делится на 3 ;
  • делаем вывод о том, что выражение будет делиться на 3 при любом целом n .

Для того, чтобы не отвлекать внимание от второстепенных деталей, применим данный алгоритм к решению предыдущего примера.

Пример 6

Покажите, что n · (n 2 + 5) делится на 3 при любом натуральном n .

Решение

Предположим, что n = 3 · m . Тогда: n · n 2 + 5 = 3 m · 3 m 2 + 5 = 3 m · 9 m 2 + 5 . Произведение, которое мы получили, содержит множитель 3 , следовательно само произведение делится на 3 .

Предположим, что n = 3 · m + 1 . Тогда:

n · n 2 + 5 = 3 m · 3 m 2 + 5 = (3 m + 1) · 9 m 2 + 6 m + 6 = = 3 m + 1 · 3 · (2 m 2 + 2 m + 2)

Произведение, которое мы получили, делится на 3 .

Предположим, что n = 3 · m + 2 . Тогда:

n · n 2 + 5 = 3 m + 1 · 3 m + 2 2 + 5 = 3 m + 2 · 9 m 2 + 12 m + 9 = = 3 m + 2 · 3 · 3 m 2 + 4 m + 3

Это произведение также делится на 3 .

Ответ: Так мы доказали, что выражение n · n 2 + 5 делится на 3 при любом натуральном n .

Пример 7

Делится ли на 3 значение выражения 10 3 n + 10 2 n + 1 при некотором натуральном n .

Решение

Предположим что n = 1 . Получаем:

10 3 n + 10 2 n + 1 = 10 3 + 10 2 + 1 = 1000 + 100 + 1 = 1104

Предположим, что n = 2 . Получаем:

10 3 n + 10 2 n + 1 = 10 6 + 10 4 + 1 = 1000 000 + 10000 + 1 = 1010001

Так мы можем сделать вывод, что при любом натуральном n мы будем получать числа, которые делятся на 3 . Это значит, что 10 3 n + 10 2 n + 1 при любом натуральном n делится на 3 .

Ответ: Да

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

m и n имеется такое целое число k и nk = m , то число m делится на n

Применение навыков делимости упрощает вычисления, и соразмерно повышает скорость их исполнения. Разберем детально основные характерные особенности делимости .

Наиболее незамысловатый признак делимости для единицы : на единицу делится все числа . Так же элементарно и с признаками делимости на два , пять , десять . На два можно поделить четные число либо то у которого итоговая цифра 0, на пять - число у которого конечная цифры 5 или 0. На десять поделятся только те числа, у которых заключительная цифра 0, на 100 — только те числа, у которых две заключительных цифры нули, на 1000 — только те, у которых три заключительных нуля.

Например:

Цифру 79516 можно разделить на 2, так как она заканчивается на 6— четное число ; 9651 не поделится на 2, так как 1 - цифра нечетная; 1790 поделится на 2, так как конечная цифра нуль. 3470 поделится на 5 (заключительная цифра 0); 1054 не поделится на 5 (конечная цифра 4). 7800 поделится на 10 и на 100; 542000 поделится на 10, 100, 1000.

Менее широко известны, но весьма удобны в использовании характерные особенности делимости на 3 и 9 , 4 , 6 и 8, 25 . Имеются так же характерные особенности делимости на 7, 11, 13, 17, 19 и так далее, но ими пользуются на практике значительно реже.

Характерная особенность деления на 3 и на 9 .

На три и/или на девять без остатка разделятся те числа, у которых результат сложения цифр кратен трем и/или девяти.

Например :

Число 156321, результат сложения 1 + 5 + 6 + 3 + 2 + 1 = 18 поделится на 3 и поделится на 9, соответственно и само число можно поделить на 3 и 9. Число 79123 не поделится ни на 3, ни на 9, так как сумма его цифр (22) не поделится на эти числа.

Характерная особенность деления на 4, 8, 16 и так далее .

Цифру можно без остатка разделить на четыре , если у нее две последние цифры нули или являются числом , которое можно поделить на 4. Во всех остальных вариантах деление без остатка не возможно.

Например :

Число 75300 поделится на 4, так как последние две цифры нули; 48834 не делится на 4, так как последние две цифры дают число 34, не делящееся на 4; 35908 делится на 4, так как две последние цифры 08 дают число 8, делящееся на 4.

Схожий принцип пригоден и для признака делимости на восемь . Число делится на восемь, если три последние его цифры нули или образуют число, делящееся на 8. В прочих случаях частное, полученное от деления, не будет целым числом.

Такие же свойства для деления на 16, 32, 64 и т. д., но в повседневных вычислениях они не используются.

Характерная особенность делимости на 6.

Число делится на шесть , если оно делится и на два и на три, при всех прочих вариантах, деление без остатка невозможно.

Например:

126 поделится на 6, так как оно делится и на 2 (заключительное четное число 6), и на 3 (сумма цифр 1 + 2 + 6 = 9 делится на три)

Характерная особенность делимости на 7.

Число делится на семь если разность его удвоенного последнего числа и "числа, оставшегося без последней цифры"делится на семь, то и само число делится на семь.

Например :

Число 296492. Возьмем последнюю цифру "2", удваиваем, выходит 4. Вычитаем 29649 - 4 = 29645. Проблематично выяснить делится ли оно на 7, следовательно анализируемом снова. Далее удваиваем последнюю цифру "5", выходит 10. Вычитаем 2964 - 10 = 2954. Результат тот же, нет ясности, делится ли оно на 7, следовательно продолжаем разбор. Анализируем с последней цифрой "4", удваиваем, выходит 8. Вычитаем 295 - 8 = 287. Сверяем двести восемьдесят семь - не делится на 7, в связи с этим продолжаем поиск. По аналогии последнюю цифру "7", удваиваем, выходит 14. Вычитаем 28 - 14 = 14. Число 14 делится на 7, итак исходное число делится на 7.

Характерная особенность делимости на 11 .

На одиннадцать делятся только те числа, у которых результат сложения цифр, размещающихся на нечетных местах, либо равен сумме цифр, размещающихся на четных местах, либо отличен на число, делящееся на одиннадцать.

Например:

Число 103 785 делится на 11, так как сумма цифр, размещающихся на нечетных местах, 1 + 3 + 8 = 12 равна сумме цифр, размещающихся на четных местах 0 + 7 + 5 = 12. Число 9 163 627 делится на 11, так как сумма цифр, размещающихся на нечетных местах, есть 9 + 6 + 6 + 7 = 28, а сумма цифр, размещающихся на четных местах, есть 1 + 3 + 2 = 6; разность между числами 28 и 6 есть 22, а это число делится на 11. Число 461 025 не делится на 11, так как числа 4 + 1 + 2 = 7 и 6 + 0 + 5 = 11 не равны друг другу, а их разность 11 - 7 = 4 не делится на 11.

Характерная особенность делимости на 25 .

На двадцать пять поделятся числа , две заключительные цифры которых нули или составляют число, которое можно разделить на двадцать пять (т. е. числа, оканчивающиеся на 00, 25, 50 или 75). При прочих вариантах - число невозможно поделить целиком на 25.

Например:

9450 поделится на 25 (оканчивается на 50); 5085 не делится на 25.

Признак делимости на 2
Число делится на 2 тогда и только тогда, когда его последняя цифра делится на 2, то есть является чётной.

Признак делимости на 3
Число делится на 3 тогда и только тогда, когда сумма его цифр делится на 3.

Признак делимости на 4
Число делится на 4 тогда и только тогда, когда число из двух последних его цифр нули или делится на 4.

Признак делимости на 5
Число делится на 5 тогда и только тогда, когда последняя цифра делится на 5 (то есть равна 0 или 5).

Признак делимости на 6
Число делится на 6 тогда и только тогда, когда оно делится на 2 и на 3.

Признак делимости на 7
Число делится на 7 тогда и только тогда, когда результат вычитания удвоенной последней цифры из этого числа без последней цифры делится на 7 (например, 259 делится на 7, так как 25 - (2 · 9) = 7 делится на 7).

Признак делимости на 8
Число делится на 8 тогда и только тогда, когда три его последние цифры - нули или образуют число, которое делится на 8.

Признак делимости на 9
Число делится на 9 тогда и только тогда, когда сумма его цифр делится на 9.

Признак делимости на 10
Число делится на 10 тогда и только тогда, когда оно оканчивается на ноль.

Признак делимости на 11
Число делится на 11 тогда и только тогда, когда сумма цифр с чередующимися знаками делится на 11 (то есть 182919 делится на 11, так как 1 - 8 + 2 - 9 + 1 - 9 = -22 делится на 11) - следствие факта, что все числа вида 10 n при делении на 11 дают в остатке (-1) n .

Признак делимости на 12
Число делится на 12 тогда и только тогда, когда оно делится на 3 и на 4.

Признак делимости на 13
Число делится на 13 тогда и только тогда, когда число его десятков, сложенное с учетверённым числом единиц, кратно 13 (например, 845 делится на 13, так как 84 + (4 · 5) = 104 делится на 13).

Признак делимости на 14
Число делится на 14 тогда и только тогда, когда оно делится на 2 и на 7.

Признак делимости на 15
Число делится на 15 тогда и только тогда, когда оно делится на 3 и на 5.

Признак делимости на 17
Число делится на 17 тогда и только тогда, когда число его десятков, сложенное с увеличенным в 12 раз числом единиц, кратно 17 (например, 29053→2905+36=2941→294+12=306→30+72=102→10+24=34. Поскольку 34 делится на 17, то и 29053 делится на 17). Признак не всегда удобен, но имеет определенное значение в математике. Есть способ немного попроще – Число делится на 17 тогда и только тогда, когда разность между числом его десятков и упятеренным числом единиц, кратно 17(например, 32952→3295-10=3285→328-25=303→30-15=15. поскольку 15 не делится на 17, то и 32952 не делится на 17)

Признак делимости на 19
Число делится на 19 тогда и только тогда, когда число его десятков, сложенное с удвоенным числом единиц, кратно 19 (например, 646 делится на 19, так как 64 + (6 · 2) = 76 делится на 19).

Признак делимости на 23
Число делится на 23 тогда и только тогда, когда число его сотен, сложенное с утроенным числом десятков, кратно 23 (например, 28842 делится на 23, так как 288 + (3 * 42) = 414 продолжаем 4 + (3 * 14) = 46 очевидно делится на 23).

Признак делимости на 25
Число делится на 25 тогда и только тогда, когда две его последние цифры делятся на 25 (то есть образуют 00, 25, 50 или 75)или число кратно 5.

Признак делимости на 99
Разобьем число на группы по 2 цифры справа налево (в самой левой группе может быть одна цифра) и найдем сумму этих групп, считая их двузначными числами. Эта сумма делится на 99 тогда и только тогда, когда само число делится на 99.

Признак делимости на 101
Разобьем число на группы по 2 цифры справа налево (в самой левой группе может быть одна цифра) и найдем сумму этих групп с переменными знаками, считая их двузначными числами. Эта сумма делится на 101 тогда и только тогда, когда само число делится на 101. Например, 590547 делится на 101, так как 59-05+47=101 делится на 101).


Серию статей о признаках делимости продолжает признак делимости на 3 . В этой статье сначала дана формулировка признака делимости на 3 , и приведены примеры применения этого признака при выяснении, какие из данных целых чисел делятся на 3 , а какие – нет. Дальше дано доказательство признака делимости на 3 . Также рассмотрены подходы к установлению делимости на 3 чисел, заданных как значение некоторого выражения.

Навигация по странице.

Признак делимости на 3, примеры

Начнем с формулировки признака делимости на 3 : целое число делится на 3 , если сумма его цифр делится на 3 , если же сумма цифр данного числа не делится на 3 , то и само число не делится на 3 .

Из приведенной формулировки понятно, что признаком делимости на 3 не удастся воспользоваться без умения выполнять . Также для успешного применения признака делимости на 3 нужно знать, что из всех на 3 делятся числа 3 , 6 и 9 , а числа 1 , 2 , 4 , 5 , 7 и 8 – не делятся на 3 .

Теперь можно рассмотреть простейшие примеры применения признака делимости на 3 . Выясним, делится ли на 3 число −42 . Для этого вычисляем сумму цифр числа −42 , она равна 4+2=6 . Так как 6 делится на 3 , то в силу признака делимости на 3 можно утверждать, что и число −42 делится на 3 . А вот целое положительное число 71 на 3 не делится, так как сумма его цифр равна 7+1=8 , а 8 не делится на 3 .

А делится ли на 3 число 0 ? Чтобы ответить на этот вопрос, признак делимости на 3 не понадобится, здесь нужно вспомнить соответствующее свойство делимости , которое утверждает, что нуль делится на любое целое число. Таким образом, 0 делится на 3 .

В некоторых случаях чтобы показать, что данное число обладает или не обладает способностью делиться на 3 , к признаку делимости на 3 приходится обращаться несколько раз подряд. Приведем пример.

Пример.

Покажите, что число 907 444 812 делится на 3 .

Решение.

Сумма цифр числа 907 444 812 равна 9+0+7+4+4+4+8+1+2=39 . Чтобы выяснить, делится ли 39 на 3 , вычислим его сумму цифр: 3+9=12 . А чтобы узнать, делится ли 12 на 3 , находим сумму цифр числа 12 , имеем 1+2=3 . Так как мы получили число 3 , которое делится на 3 , то в силу признака делимости на 3 число 12 делится на 3 . Следовательно, 39 делится на 3 , так как сумма его цифр равна 12 , а 12 делится на 3 . Наконец, 907 333 812 делится на 3 , так как сумма его цифр равна 39 , а 39 делится на 3 .

Для закрепления материала разберем решение еще одного примера.

Пример.

Делится ли на 3 число −543 205 ?

Решение.

Вычислим сумму цифр данного числа: 5+4+3+2+0+5=19 . В свою очередь сумма цифр числа 19 равна 1+9=10 , а сумма цифр числа 10 равна 1+0=1 . Так как мы получили число 1 , которое не делится на 3 , из признака делимости на 3 следует, что 10 не делится на 3 . Поэтому 19 не делится на 3 , так как сумма его цифр равна 10 , а 10 не делится на 3 . Следовательно, исходное число −543 205 не делится на 3 , так как сумма его цифр, равная 19 , не делится на 3 .

Ответ:

Нет.

Стоит заметить, что непосредственное деление данного числа на 3 также позволяет сделать вывод о том, делится ли данное число на 3 нацело, или нет. Этим мы хотим сказать, что не нужно пренебрегать делением в пользу признака делимости на 3 . В последнем примере, 543 205 на 3 , мы бы убедились, что 543 205 не делится нацело на 3 , откуда можно было бы сказать, что и −543 205 не делится на 3 .

Доказательство признака делимости на 3

Доказать признак делимости на 3 нам поможет следующее представление числа a . Любое натуральное число a мы можем , после чего позволяет получить представление вида , где a n , a n−1 , …, a 0 – цифры, стоящие слева направо в записи числа a . Для наглядности приведем пример такого представления: 528=500+20+8=5·100+2·10+8 .

Теперь запишем ряд достаточно очевидных равенств: 10=9+1=3·3+1 , 100=99+1=33·3+1 , 1 000=999+1=333·3+1 и так далее.

Подставив в равенство a=a n ·10 n +a n−1 ·10 n−1 +…+a 2 ·10 2 +a 1 ·10+a 0 вместо 10 , 100 , 1 000 и так далее выражения 3·3+1 , 33·3+1 , 999+1=333·3+1 и так далее, получим
.

И позволяют полученное равенство переписать так:

Выражение есть сумма цифр числа a . Обозначим ее для краткости и удобства буквой А , то есть, примем . Тогда получим представление числа a вида , которым и воспользуемся при доказательстве признака делимости на 3 .

Также для доказательства признака делимости на 3 нам потребуются следующие свойства делимости:

  • чтобы целое число a делилось на целое число b необходимо и достаточно, чтобы a делился на модуль числа b ;
  • если в равенстве a=s+t все члены, кроме какого-то одного, делятся на некоторое целое число b , то и этот один член делится на b .

Теперь мы полностью подготовлены и можем провести доказательство признака делимости на 3 , для удобства этот признак сформулируем в виде необходимого и достаточного условия делимости на 3 .

Теорема.

Для делимости целого числа a на 3 необходимо и достаточно, чтобы сумма его цифр делилась на 3 .

Доказательство.

Для a=0 теорема очевидна.

Если a отлично от нуля, то модуль числа a является натуральным числом, тогда возможно представление , где - сумма цифр числа a .

Так как сумма и произведение целых чисел есть целое число, то - целое число, тогда по определению делимости произведение делится на 3 при любых a 0 , a 1 , …, a n .

Если сумма цифр числа a делится на 3 , то есть, А делится на 3 , то в силу свойства делимости, указанного перед теоремой, делится на 3 , следовательно, a делится на 3 . Так доказана достаточность.

Если a делится на 3 , то и делится на 3 , тогда в силу того же свойства делимости число А делится на 3 , то есть, сумма цифр числа a делится на 3 . Так доказана необходимость.

Другие случаи делимости на 3

Иногда целые числа задаются не в явном виде, а как значение некоторого при данном значении переменной. Например, значение выражения при некотором натуральном n является натуральным числом. Понятно, что при таком задании чисел для установления их делимости на 3 не поможет непосредственное деление на 3 , да и признак делимости на 3 удастся применить далеко не всегда. Сейчас мы рассмотрим несколько подходов к решению подобных задач.

Суть этих подходов заключается в представлении исходного выражения в виде произведения нескольких множителей, и если хотя бы один из множителей будет делиться на 3 , то в силу соответствующего свойства делимости можно будет сделать вывод о делимости на 3 всего произведения.

Иногда реализовать такой подход позволяет . Рассмотрим решение примера.

Пример.

Делится ли значение выражения на 3 при любом натуральном n ?

Решение.

Очевидно равенство . Воспользуемся формулой бинома Ньютона:

В последнем выражении мы можем вынести 3 за скобки, при этом получим . Полученное произведение делится на 3 , так как содержит множитель 3 , а значение выражения в скобках при натуральных n представляет собой натуральное число. Следовательно, делится на 3 при любом натуральном n .

Ответ:

Да.

Во многих случаях доказать делимость на 3 позволяет . Разберем его применение при решении примера.

Пример.

Докажите, что при любом натуральном n значение выражения делится на 3 .

Решение.

Для доказательства применим метод математической индукции.

При n=1 значение выражения равно , а 6 делится на 3 .

Предположим, что значение выражения делится на 3 при n=k , то есть, делится на 3 .

Учитывая, что делится на 3 , покажем, что значение выражения при n=k+1 делится на 3 , то есть, покажем, что делится на 3 .