Какого вида функцию называют показательной. Показательные уравнения и неравенства

Показательная функция

Функция вида y = a x , где a больше нуля и а не равно единице называется показательной функцией. Основные свойства показательной функции:

1. Областью определения показательной функции будет являться множество вещественных чисел.

2. Область значений показательной функции будет являться множество всех положительных вещественных чисел. Иногда это множество для краткости записи обозначают как R+.

3. Если в показательной функции основание a больше единицы, то функция будет возрастающей на всей области определения. Если в показательной функции для основания а выполнено следующее условие 0

4. Справедливы будет все основные свойства степеней. Основные свойства степеней представлены следующим равенствами:

a x *a y = a (x + y) ;

(a x )/(a y ) = a (x-y) ;

(a*b) x = (a x )*(a y );

(a/b) x = a x /b x ;

(a x ) y = a (x * y) .

Данные равенства будут справедливы для все действительных значений х и у.

5. График показательной функции всегда проходит через точку с координатами (0;1)

6. В зависимости от того возрастает или убывает показательная функция, её график будет иметь один из двух видов.

На следующем рисунке представлен график возрастающей показательной функции: a>0.

На следующем рисунке представлен график убывающей показательной функции: 0

И график возрастающей показательной функции и график убывающей показательной функции согласно свойству, описанному в пятом пункте, проходят через точку (0;1).

7. Показательная функция не имеет точек экстремума, то есть другими словами, она не имеет точек минимума и максимума функции. Если рассматривать функцию на каком-либо конкретном отрезке, то минимальное и максимальное значения функция будет принимать на концах этого промежутка.

8. Функция не является четной или нечетной. Показательная функция это функция общего вида. Это видно и из графиков, ни один из них не симметричен ни относительно оси Оу, ни относительно начала координат.

Логарифм

Логарифмы всегда считались сложной темой в школьном курсе математики. Существует много разных определений логарифма, но большинство учебников почему-то используют самые сложные и неудачные из них.

Мы же определим логарифм просто и наглядно. Для этого составим таблицу:

Итак, перед нами степени двойки. Если взять число из нижней строчки, то можно легко найти степень, в которую придется возвести двойку, чтобы получилось это число. Например, чтобы получить 16, надо два возвести в четвертую степень. А чтобы получить 64, надо два возвести в шестую степень. Это видно из таблицы.

А теперь - собственно, определение логарифма:

Определение

Логарифм по основанию a от аргумента x - это степень, в которую надо возвести число a, чтобы получить число x.

Обозначение

log a x = b
где a - основание, x - аргумент, b - собственно, чему равен логарифм.

Например, 2 3 = 8 ⇒ log 2 8 = 3 (логарифм по основанию 2 от числа 8 равен трем, поскольку 2 3 = 8). С тем же успехом log 2 64 = 6, поскольку 2 6 = 64.

Операцию нахождения логарифма числа по заданному основанию называют логарифмированием . Итак, дополним нашу таблицу новой строкой:

К сожалению, далеко не все логарифмы считаются так легко. Например, попробуйте найти log 2 5. Числа 5 нет в таблице, но логика подсказывает, что логарифм будет лежать где-то на отрезке . Потому что 2 2 < 5 < 2 3 , а чем больше степень двойки, тем больше получится число.

Такие числа называются иррациональными: цифры после запятой можно писать до бесконечности, и они никогда не повторяются. Если логарифм получается иррациональным, его лучше так и оставить: log 2 5, log 3 8, log 5 100.

Важно понимать, что логарифм - это выражение с двумя переменными (основание и аргумент). Многие на первых порах путают, где находится основание, а где - аргумент. Чтобы избежать досадных недоразумений, просто взгляните на картинку:

Перед нами - не что иное как определение логарифма. Вспомните: логарифм - это степень, в которую надо возвести основание, чтобы получить аргумент. Именно основание возводится в степень - на картинке оно выделено красным. Получается, что основание всегда находится внизу! Это замечательное правило я рассказываю своим ученикам на первом же занятии - и никакой путаницы не возникает.

С определением разобрались - осталось научиться считать логарифмы, т.е. избавляться от знака «log». Для начала отметим, что из определения следует два важных факта:

    Аргумент и основание всегда должны быть больше нуля. Это следует из определения степени рациональным показателем, к которому сводится определение логарифма.

    Основание должно быть отличным от единицы, поскольку единица в любой степени все равно остается единицей. Из-за этого вопрос «в какую степень надо возвести единицу, чтобы получить двойку» лишен смысла. Нет такой степени!

Такие ограничения называются областью допустимых значений (ОДЗ). Получается, что ОДЗ логарифма выглядит так: log a x = b x > 0, a > 0, a ≠ 1.

Заметьте, что никаких ограничений на число b (значение логарифма) не накладывается. Например, логарифм вполне может быть отрицательным: log 2 0,5 = −1, т.к. 0,5 = 2 −1 .

Впрочем, сейчас мы рассматриваем лишь числовые выражения, где знать ОДЗ логарифма не требуется. Все ограничения уже учтены составителями задач. Но когда пойдут логарифмические уравнения и неравенства, требования ОДЗ станут обязательными. Ведь в основании и аргументе могут стоять весьма неслабые конструкции, которые совсем необязательно соответствуют приведенным выше ограничениям.

Теперь рассмотрим общую схему вычисления логарифмов. Она состоит из трех шагов:

    Представить основание a и аргумент x в виде степени с минимально возможным основанием, большим единицы. Попутно лучше избавиться от десятичных дробей;

    Решить относительно переменной b уравнение: x = a b ;

    Полученное число b будет ответом.

Вот и все! Если логарифм окажется иррациональным, это будет видно уже на первом шаге. Требование, чтобы основание было больше единицы, весьма актуально: это снижает вероятность ошибки и значительно упрощает выкладки. Аналогично с десятичными дробями: если сразу перевести их в обычные, ошибок будет в разы меньше.

Посмотрим, как работает эта схема на конкретных примерах:

Вычислите логарифм: log 5 25

    Представим основание и аргумент как степень пятерки: 5 = 5 1 ; 25 = 5 2 ;

    Составим и решим уравнение:
    log 5 25 = b ⇒ (5 1) b = 5 2 ⇒ 5 b = 5 2 ⇒ b = 2;

    Получили ответ: 2.

Вычислите логарифм:

    Представим основание и аргумент как степень тройки: 3 = 3 1 ; 1/81 = 81 −1 = (3 4) −1 = 3 −4 ;

    Составим и решим уравнение:

    Получили ответ: −4.

4

Вычислите логарифм: log 4 64

    Представим основание и аргумент как степень двойки: 4 = 2 2 ; 64 = 2 6 ;

    Составим и решим уравнение:
    log 4 64 = b ⇒ (2 2) b = 2 6 ⇒ 2 2 b = 2 6 ⇒ 2b = 6 ⇒ b = 3;

    Получили ответ: 3.

Вычислите логарифм: log 16 1

    Представим основание и аргумент как степень двойки: 16 = 2 4 ; 1 = 2 0 ;

    Составим и решим уравнение:
    log 16 1 = b ⇒ (2 4) b = 2 0 ⇒ 2 4 b = 2 0 ⇒ 4b = 0 ⇒ b = 0;

    Получили ответ: 0.

Вычислите логарифм: log 7 14

    Представим основание и аргумент как степень семерки: 7 = 7 1 ; 14 в виде степени семерки не представляется, поскольку 7 1 < 14 < 7 2 ;

    Из предыдущего пункта следует, что логарифм не считается;

    Ответ - без изменений: log 7 14.

log 7 14

Небольшое замечание к последнему примеру. Как убедиться, что число не является точной степенью другого числа? Очень просто - достаточно разложить его на простые множители. Если в разложении есть хотя бы два различных множителя, число не является точной степенью.

Выясните, являются ли точными степенями числа: 8; 48; 81; 35; 14.

8 = 2 · 2 · 2 = 2 3 - точная степень, т.к. множитель всего один;
48 = 6 · 8 = 3 · 2 · 2 · 2 · 2 = 3 · 2 4 - не является точной степенью, поскольку есть два множителя: 3 и 2;
81 = 9 · 9 = 3 · 3 · 3 · 3 = 3 4 - точная степень;
35 = 7 · 5 - снова не является точной степенью;
14 = 7 · 2 - опять не точная степень;

8, 81 - точная степень; 48, 35, 14 - нет.

Заметим также, что сами простые числа всегда являются точными степенями самих себя.

Десятичный логарифм

Некоторые логарифмы встречаются настолько часто, что имеют специальное название и обозначение.

Определение

Десятичный логарифм от аргумента x - это логарифм по основанию 10, т.е. степень, в которую надо возвести число 10, чтобы получить число x.

Обозначение

lg x

Например, lg 10 = 1; lg 100 = 2; lg 1000 = 3 - и т.д.

Отныне, когда в учебнике встречается фраза типа «Найдите lg 0,01», знайте: это не опечатка. Это десятичный логарифм. Впрочем, если вам непривычно такое обозначение, его всегда можно переписать:
lg x = log 10 x

Все, что верно для обычных логарифмов, верно и для десятичных.

Натуральный логарифм

Существует еще один логарифм, который имеет собственное обозначение. В некотором смысле, он даже более важен, чем десятичный. Речь идет о натуральном логарифме.

Определение

Натуральный логарифм от аргумента x - это логарифм по основанию e, т.е. степень, в которую надо возвести число e, чтобы получить число x.

Обозначение

ln x

Многие спросят: что еще за число e? Это иррациональное число, его точное значение найти и записать невозможно. Приведу лишь первые его цифры:
e = 2,718281828459...

Не будем углубляться, что это за число и зачем нужно. Просто помните, что e - основание натурального логарифма:
ln
x = log e x

Таким образом, ln e = 1; ln e 2 = 2; ln e 16 = 16 - и т.д. С другой стороны, ln 2 - иррациональное число. Вообще, натуральный логарифм любого рационального числа иррационален. Кроме, разумеется, единицы: ln 1 = 0.

Для натуральных логарифмов справедливы все правила, которые верны для обычных логарифмов.

Основные свойства логарифмов

Логарифмы, как и любые числа, можно складывать, вычитать и всячески преобразовывать. Но поскольку логарифмы - это не совсем обычные числа, здесь есть свои правила, которые называются основными свойствами.

Эти правила обязательно надо знать - без них не решается ни одна серьезная логарифмическая задача. К тому же, их совсем немного - все можно выучить за один день. Итак, приступим.

Сложение и вычитание логарифмов

Рассмотрим два логарифма с одинаковыми основаниями: log a x и log a y. Тогда их можно складывать и вычитать, причем:

    log a x + log a y = log a ( x · y );

    log a x − log a y = log a ( x : y ).

Итак, сумма логарифмов равна логарифму произведения, а разность - логарифму частного. Обратите внимание: ключевой момент здесь - одинаковые основания. Если основания разные, эти правила не работают!

Эти формулы помогут вычислить логарифмическое выражение даже тогда, когда отдельные его части не считаются (см. урок « »). Взгляните на примеры - и убедитесь:

Найдите значение выражения: log 6 4 + log 6 9.

Поскольку основания у логарифмов одинаковые, используем формулу суммы:
log 6 4 + log 6 9 = log 6 (4 · 9) = log 6 36 = 2.

Найдите значение выражения: log 2 48 − log 2 3.

Основания одинаковые, используем формулу разности:
log 2 48 − log 2 3 = log 2 (48: 3) = log 2 16 = 4.

Найдите значение выражения: log 3 135 − log 3 5.

Снова основания одинаковые, поэтому имеем:
log 3 135 − log 3 5 = log 3 (135: 5) = log 3 27 = 3.

Как видите, исходные выражения составлены из «плохих» логарифмов, которые отдельно не считаются. Но после преобразований получаются вполне нормальные числа. На этом факте построены многие контрольные работы. Да что контрольные - подобные выражения на полном серьезе (иногда - практически без изменений) предлагаются на ЕГЭ.

Вынесение показателя степени из логарифма

Теперь немного усложним задачу. Что, если в основании или аргументе логарифма стоит степень? Тогда показатель этой степени можно вынести за знак логарифма по следующим правилам:

Несложно заметить, что последнее правило следует их первых двух. Но лучше его все-таки помнить - в некоторых случаях это значительно сократит объем вычислений.

Разумеется, все эти правила имеют смысл при соблюдении ОДЗ логарифма: a > 0, a ≠ 1, x > 0. И еще: учитесь применять все формулы не только слева направо, но и наоборот, т.е. можно вносить числа, стоящие перед знаком логарифма, в сам логарифм. Именно это чаще всего и требуется.

Найдите значение выражения: log 7 49 6 .

Избавимся от степени в аргументе по первой формуле:
log 7 49 6 = 6 · log 7 49 = 6 · 2 = 12

Найдите значение выражения:

Заметим, что в знаменателе стоит логарифм, основание и аргумент которого являются точными степенями: 16 = 2 4 ; 49 = 7 2 . Имеем:

Думаю, к последнему примеру требуются пояснения. Куда исчезли логарифмы? До самого последнего момента мы работаем только со знаменателем. Представили основание и аргумент стоящего там логарифма в виде степеней и вынесли показатели - получили «трехэтажную» дробь.

Теперь посмотрим на основную дробь. В числителе и знаменателе стоит одно и то же число: log 2 7. Поскольку log 2 7 ≠ 0, можем сократить дробь - в знаменателе останется 2/4. По правилам арифметики, четверку можно перенести в числитель, что и было сделано. В результате получился ответ: 2.

Переход к новому основанию

Говоря о правилах сложения и вычитания логарифмов, я специально подчеркивал, что они работают только при одинаковых основаниях. А что, если основания разные? Что, если они не являются точными степенями одного и того же числа?

На помощь приходят формулы перехода к новому основанию. Сформулируем их в виде теоремы:

Теорема

Пусть дан логарифм log a x. Тогда для любого числа c такого, что c > 0 и c ≠ 1, верно равенство:

В частности, если положить c = x, получим:

Из второй формулы следует, что можно менять местами основание и аргумент логарифма, но при этом все выражение «переворачивается», т.е. логарифм оказывается в знаменателе .

Эти формулы редко встречается в обычных числовых выражениях. Оценить, насколько они удобны, можно только при решении логарифмических уравнений и неравенств.

Впрочем, существуют задачи, которые вообще не решаются иначе как переходом к новому основанию. Рассмотрим парочку таких:

Найдите значение выражения: log 5 16 · log 2 25.

Заметим, что в аргументах обоих логарифмов стоят точные степени. Вынесем показатели: log 5 16 = log 5 2 4 = 4log 5 2; log 2 25 = log 2 5 2 = 2log 2 5;

А теперь «перевернем» второй логарифм:

Поскольку от перестановки множителей произведение не меняется, мы спокойно перемножили четверку и двойку, а затем разобрались с логарифмами.

Найдите значение выражения: log 9 100 · lg 3.

Основание и аргумент первого логарифма - точные степени. Запишем это и избавимся от показателей:

Теперь избавимся от десятичного логарифма, перейдя к новому основанию:

Основное логарифмическое тождество

Часто в процессе решения требуется представить число как логарифм по заданному основанию. В этом случае нам помогут формулы:

В первом случае число n становится показателем степени, стоящей в аргументе. Число n может быть абсолютно любым, ведь это просто значение логарифма.

Вторая формула - это фактически перефразированное определение. Она так и называется: основное логарифмическое тождество .

В самом деле, что будет, если число b возвести в такую степень, что число b в этой степени дает число a? Правильно: получится это самое число a. Внимательно прочитайте этот абзац еще раз - многие на нем «зависают».

Подобно формулам перехода к новому основанию, основное логарифмическое тождество иногда бывает единственно возможным решением.

Задача

Найдите значение выражения:

Решение

Заметим, что log 25 64 = log 5 8 - просто вынесли квадрат из основания и аргумента логарифма. Учитывая правила умножения степеней с одинаковым основанием, получаем:

200

Если кто-то не в курсе, это была настоящая задача из ЕГЭ:)

Логарифмическая единица и логарифмический ноль

В заключение приведу два тождества, которые сложно назвать свойствами - скорее, это следствия из определения логарифма. Они постоянно встречаются в задачах и, что удивительно, создают проблемы даже для «продвинутых» учеников.

    log a a = 1 - это логарифмическая единица . Запомните раз и навсегда: логарифм по любому основанию a от самого этого основания равен единице.

    log a 1 = 0 - это логарифмический ноль . Основание a может быть каким угодно, но если в аргументе стоит единица - логарифм равен нулю! Потому что a 0 = 1 - это прямое следствие из определения.

Вот и все свойства. Обязательно потренируйтесь применять их на практике!

Найдем значение выражения при различных рациональных значениях переменной х=2; 0; -3; -

Заметим, какое бы число вместо переменной икс мы не подставили, всегда можно найти значение данного выражения. Значит, мы рассматриваем показательную функцию (игрек равен три в степени икс), определенную на множестве рациональных чисел: .

Построим график данной функции, составив таблицу ее значений.

Проведем плавную линию, проходящую через данные точки (рис 1)

Используя график данной функции, рассмотрим ее свойства:

3.Возрастает на всей области определения.

  1. область значения от нуля до плюс бесконечности.

8. Функция выпукла вниз.

Если в одной системе координат построить графики функций; у=(игрек равен два в степени икс, игрек равен пять в степени икс, игрек равен семь в степени икс), то можно заметить, что они обладают теми же свойствами, что и у=(игрек равен трем в степени икс) (рис.2), то есть такими свойствами будут обладать все функции вида у=(игрек равен а в степени икс, при а большем единицы)

Построим график функции:

1. Составив таблицу ее значений.

Отметим полученные точки на координатной плоскости.

Проведем плавную линию, проходящую через данные точки (рис 3).

Используя график данной функции, укажем ее свойства:

1. Область определения - множество всех действительных чисел.

2.Не является ни четной, ни нечетной.

3.Убывает на всей области определения.

4.Не имеет ни наибольшего, ни наименьшего значений.

5.Ограничена снизу, но не ограничена сверху.

6.Непрерывна на всей области определения.

7. область значения от нуля до плюс бесконечности.

8. Функция выпукла вниз.

Аналогично, если в одной системе координат построить графики функций; у=(игрек равен одна вторая в степени икс, игрек равен одна пятая в степени икс, игрек равен одна седьмая в степени икс), то можно заметить, что они обладают теми же свойствами, что и у=(игрек равен одна третья в степени икс)(рис.4), то есть такими свойствами будут обладать все функции вида у=(игрек равен единица, деленная на а в степени икс, при а большем нуля, но меньшем единицы)

Построим в одной системе координат графики функций

значит, будут симметричны и графики функций у=у= (игрек равен а в степени икс и игрек равен единице, деленной на а в степени икс) при одном и том же значении а.

Обобщим сказанное, дав определение показательной функции и указав ее основные свойства:

Определение: Функция вида у=, где (игрек равен а в степени икс, где а положительно и отлично от единицы), называют показательной функцией.

Необходимо запомнить различия между показательной функцией у= и степенной функцией у=, а=2,3,4,…. как на слух, так и зрительно. У показательной функции х является степенью, а у степенной функции х является основанием.

Пример1: Решите уравнение (три в степени икс равно девяти)

(игрек равняется три в степени икс и игрек равняется девяти) рис.7

Заметим, что они имеют одну общую точку М (2;9) (эм с координатами два; девять), значит, абсцисса точки будет являться корнем данного уравнения. То есть, уравнение имеет единственный корень х= 2.

Пример 2: Решите уравнение

В одной системе координат построим два графика функции у= (игрек равен пяти в степени икс и игрек равен одна двадцать пятая) рис.8. Графики пересекаются в одной точке Т (-2;(тэ с координатами минус два; одна двадцать пятая). Значит, корнем уравнения является х=-2(число минус два).

Пример 3: Решите неравенство

В одной системе координат построим два графика функции у=

(игрек равен три в степени икс и игрек равен двадцати семи).

Рис.9 График функции расположен выше графика функции у=при

х Следовательно, решением неравенства является интервал (от минус бесконечности до трех)

Пример 4: Решите неравенство

В одной системе координат построим два графика функции у= (игрек равен одна четвертая в степени икс и игрек равен шестнадцати). (рис.10). Графики пересекаются в одной точке К (-2;16). Значит, решением неравенства является промежуток (-2;(от минус двух до плюс бесконечности), т.к. график функции у=расположен ниже графика функции при х

Наши рассуждения позволяют убедиться в справедливости следующих теорем:

Терема 1: Если справедливо тогда и только тогда, когда m=n.

Теорема 2: Если справедливо тогда и только тогда, когда, неравенство справедливо тогда и только тогда, когда (рис. *)

Теорема 4: Если справедливо тогда и только тогда, когда (рис.**), неравенство справедливо тогда и только тогда, когда.Теорема 3: Если справедливо тогда и только тогда, когда m=n.

Пример 5: Построить график функции у=

Видоизменим функцию, применив свойство степени у=

Построим дополнительную систему координат и в новой системе координат построим график функции у= (игрек равен два в степени икс) рис.11.

Пример 6: Решите уравнение

В одной системе координат построим два графика функции у=

(игрек равен семи в степени икс и игрек равен восемь минус икс) рис.12.

Графики пересекаются в одной точке Е (1;(е с координатами один; семь). Значит, корнем уравнения является х=1(икс равный единице).

Пример 7: Решите неравенство

В одной системе координат построим два графика функции у=

(игрек равен одна четвертая в степени икс и игрек равен икс плюс пять). График функции у=расположен ниже графика функции у=х+5 при, решением неравенства является интервал х(от минус единицы до плюс бесконечности).

Урок № 2

Тема: Показательная функция, её свойства и график.

Цель: Проверить качество усвоения понятия «показательная функция»; сформировать умения и навыки по распознаванию показательной функции, по использованию её свойств и графиков, научить учащихся пользоваться аналитической и графической формами записи показательной функции; обеспечить рабочую обстановку на уроке.

Оборудование: доска, плакаты

Форма урока : классно-урочная

Вид урока : практическое занятие

Тип урока : урок обучения умениям и навыкам

План урока

1. Организационный момент

2. Самостоятельная работа и проверка домашнего задания

3. Решение задач

4. Подведение итогов

5. Задание на дом

Ход урока .

1. Организационный момент :

Здравствуйте. Откройте тетради, запишите сегодняшнее число и тему урока «Показательная функция». Сегодня будем продолжать изучать показательную функцию, её свойства и график.

2. Самостоятельная работа и проверка домашнего задания .

Цель: проверить качество усвоения понятия «показательная функция» и проверить выполнение теоретической части домашнего задания

Метод: тестовое задание, фронтальный опрос

В качестве домашнего задания вам были заданы номера из задачника и параграф из учебника. Выполнение номеров из учебника проверять сейчас не будем, но вы сдадите тетради в конце урока. Сейчас же будет проведена проверка теории в виде маленького теста. Задание у всех одинаковое: вам дан перечень функций, вы должны узнать какие из них являются показательными (подчеркнуть их). И рядом с показательной функцией необходимо написать является она возрастающей, либо убывающей.

Вариант 1

Ответ

Б)

Д) - показательная, убывающая

Вариант 2

Ответ

Г) - показательная, убывающая

Д) - показательная, возрастающая

Вариант 3

Ответ

А) - показательная, возрастающая

Б) - показательная, убывающая

Вариант 4

Ответ

А) - показательная, убывающая

В) - показательная, возрастающая

Теперь вместе вспомним, какая функция называется показательной?

Функция вида , где и , называется показательной функцией.

Какая область определения у этой функции?

Все действительные числа.

Какая область значений показательной функции?

Все положительные действительные числа.

Убывает если основание степени больше нуля, но меньше единицы.

В каком случае показательная функция убывает на своей области определения?

Возрастает, если основание степени больше единицы.

3. Решение задач

Цель : сформировать умения и навыки по распознаванию показательной функции, по использованию её свойств и графиков, научить учащихся пользоваться аналитической и графической формами записи показательной функции

Метод : демонстрация учителем решения типичных задач, устная работа, работа у доски, работа в тетради, беседа учителя с учащимися.

Свойства показательной функции можно использовать при сравнении 2-х и более чисел. Например: № 000. Сравните значения и , если а) ..gif" width="37" height="20 src=">, то это довольно сложная работа: нам бы пришлось извлекать кубический корень из 3 и из 9, и сравнивать их. Но мы знаем, что возрастает, это в свою очередь значит, что при увеличении аргумента, увеличивается значение функции, то есть нам достаточно сравнить между собой значения аргумента и , очевидно, что (можно продемонстрировать на плакате с изображенной возрастающей показательной функцией). И всегда при решении таких примеров вначале определяете основание показательной функции, сравниваете с 1, определяете монотонность и переходите к сравнению аргументов. В случает убывания функции: при возрастания аргумента уменьшается значение функции, следовательно, знак неравенства меняем при переходе от неравенства аргументов к неравенству функций. Далее решаем устно: б)

-

В)

-

Г)

-

- № 000. Сравните числа: а) и

Следовательно, функция возрастает, тогда

Почему ?

Возрастающая функция и

Следовательно, функция убывает, тогда

Обе функции возрастают на всей своей области определения, т. к. они являются показательными с основанием степени большим единицы.

Какой смысл в ней заложен?

Строим графики:

Какая функция быстрее возрастает, при стремлении https://pandia.ru/text/80/379/images/image062_0.gif" width="20 height=25" height="25">

Какая функция быстрее убывает, при стремлении https://pandia.ru/text/80/379/images/image062_0.gif" width="20 height=25" height="25">

На промежутке какая из функций имеет большее значение в конкретно заданной точке?

Г) , https://pandia.ru/text/80/379/images/image068_0.gif" width="69" height="57 src=">. Вначале выясним область определения этих функций. Совпадают ли они?

Да, область определения этих функций все действительные числа.

Назовите область значения каждой из этих функций.

Области значений этих функций совпадают: все положительные действительные числа.

Определите тип монотонности каждой из функций.

Все три функции убывают на всей своей области определения, т. к. они являются показательными с основанием степени меньшими единицы и большими нуля.

Какая особая точка существует у графика показательной функции?

Какой смысл в ней заложен?

Какое бы не было основание степени показательной функции, если в показателе стоит 0,то значение этой функции 1.

Строим графики:

Давайте проанализируем графики. Сколько точек пересечения у графиков функций?

Какая функция быстрее убывает, при стремлении https://pandia.ru/text/80/379/images/image070.gif" width="41 height=57" height="57">

Какая функция быстрее возрастает, при стремлении https://pandia.ru/text/80/379/images/image070.gif" width="41 height=57" height="57">

На промежутке какая из функций имеет большее значение в конкретно заданной точке?

На промежутке какая из функций имеет большее значение в конкретно заданной точке?

Почему показательные функции с разными основаниями имеют только одну точку пересечения?

Показательные функции являются строго монотонными на всей своей области определения, поэтому они могут пересекаться только в одной точке.

Следующее задание будет направлено на использование этого свойства. № 000. Найдите наибольшее и наименьшее значение заданной функции на заданном промежутке а) . Вспомним, что строго монотонная функция принимает свои наименьшее и наибольшее значения на концах заданного отрезка. И если функция возрастающая, то её наибольшее значение будет на правом конце отрезка, а наименьшее на левом конце отрезка (демонстрация на плакате, на примере показательной функции). Если функция убывающая, то её наибольшее значение будет на левом конце отрезка, а наименьшее на правом конце отрезка (демонстрация на плакате, на примере показательной функции). Функция возрастающая, т. к. , следовательно, наименьшее значение функции будет в точке https://pandia.ru/text/80/379/images/image075_0.gif" width="145" height="29">. Пункты б) , в) г) решите самостоятельно тетради, проверку проведем устно.

Учащиеся решают задание в тетради

Убывающая функция

Убывающая функция

наибольшее значение функции на отрезке

наименьшее значение функции на отрезке

Возрастающая функция

наименьшее значение функции на отрезке

наибольшее значение функции на отрезке

- № 000. Найдите наибольшее и наименьшее значение заданной функции на заданном промежутке а) . Это задание практически такое же, как и предыдущее. Но здесь дан не отрезок, а луч. Мы знаем, что функция - возрастающая, при чем она не имеет ни наибольшего, ни наименьшего своего значения на всей числовой прямой https://pandia.ru/text/80/379/images/image063_0.gif" width="68" height="20">, и стремится к при , т. е. на луче функция при стремится к 0, но не имеет своего наименьшего значения, но у неё существует наибольшее значение в точке . Пункты б) , в) , г) решите самостоятельно тетради, проверку проведем устно.

Концентрация внимания:

Определение. Функция вида называется показательной функцией .

Замечание. Исключение из числа значений основания a чисел 0; 1 и отрицательных значений a объясняется следующими обстоятельствами:

Само аналитическое выражение a x в указанных случаях сохраняет смысл и может встречаться в решении задач. Например, для выражения x y точка x = 1; y = 1 входит в область допустимых значений.

Построить графики функций: и .

График показательной функции
y = a x , a > 1 y = a x , 0< a < 1

Свойства показательной функции

Свойства показательной функции y = a x , a > 1 y = a x , 0< a < 1
  1. Область определения функции
2. Область значений функции
3.Промежутки сравнения с единицей при x > 0, a x > 1 при x > 0, 0< a x < 1
при x < 0, 0< a x < 1 при x < 0, a x > 1
4. Чётность, нечётность. Функция не является ни чётной, ни нечётной (функция общего вида).
5.Монотонность. монотонно возрастает на R монотонно убывает на R
6. Экстремумы. Показательная функция экстремумов не имеет.
7.Асимптота Ось O x является горизонтальной асимптотой.
8. При любых действительных значениях x и y ;

Когда заполняется таблица, то параллельно с заполнением решаются задания.

Задание № 1. (Для нахождения области определения функции).

Какие значения аргумента являются допустимыми для функций:

Задание № 2. (Для нахождения области значений функции).

На рисунке изображен график функции. Укажите область определения и область значений функции:

Задание № 3. (Для указания промежутков сравнения с единицей).

Каждую из следующих степеней сравните с единицей:

Задание № 4. (Для исследования функции на монотонность).

Сравнить по величине действительные числа m и n если:

Задание № 5. (Для исследования функции на монотонность).

Сделайте заключение относительно основания a , если:

y(x) = 10 x ; f(x) = 6 x ; z(x) - 4 x

Как располагаются графики показательных функций относительно друг друга при x > 0, x = 0, x < 0?

В одной координатной плоскости построены графики функций:

y(x) = (0,1) x ; f(x) = (0,5) x ; z(x) = (0,8) x .

Как располагаются графики показательных функций относительно друг друга при x > 0, x = 0, x < 0?

Число одна из важнейших постоянных в математике. По определению, оно равно пределу последовательности при неограниченном возрастании n . Обозначение e ввёл Леонард Эйлер в 1736 г. Он вычислил первые 23 знака этого числа в десятичной записи, а само число назвали в честь Непера «неперовым числом».

Число e играет особую роль в математическом анализе. Показательная функция с основанием e , называется экспонентой и обозначается y = e x .

Первые знаки числа e запомнить несложно: два, запятая, семь, год рождения Льва Толстого - два раза, сорок пять, девяносто, сорок пять.

Домашнее задание:

Колмогоров п. 35; № 445-447; 451; 453.

Повторить алгоритм построения графиков функций, содержащих переменную под знаком модуля.

Решение большинства математических задач так или иначе связано с преобразованием числовых, алгебраических или функциональных выражений. Сказанное в особенности относится к решению . В вариантах ЕГЭ по математике к такому типу задач относится, в частности, задача C3. Научиться решать задания C3 важно не только с целью успешной сдачи ЕГЭ, но и по той причине, что это умение пригодится при изучении курса математики в высшей школе.

Выполняя задания C3, приходится решать различные виды уравнений и неравенств. Среди них — рациональные, иррациональные, показательные, логарифмические, тригонометрические, содержащие модули (абсолютные величины), а также комбинированные. В этой статье рассмотрены основные типы показательных уравнений и неравенств, а также различные методы их решений. О решении остальных видов уравнений и неравенств читайте в рубрике « » в статьях, посвященных методам решения задач C3 из вариантов ЕГЭ по математике.

Прежде чем приступить к разбору конкретных показательных уравнений и неравенств , как репетитор по математике, предлагаю вам освежить в памяти некоторый теоретический материал, который нам понадобится.

Показательная функция

Что такое показательная функция?

Функцию вида y = a x , где a > 0 и a ≠ 1, называют показательной функцией .

Основные свойства показательной функции y = a x :

График показательной функции

Графиком показательной функции является экспонента :

Графики показательных функций (экспоненты)

Решение показательных уравнений

Показательными называются уравнения, в которых неизвестная переменная находится только в показателях каких-либо степеней.

Для решения показательных уравнений требуется знать и уметь использовать следующую несложную теорему:

Теорема 1. Показательное уравнение a f (x ) = a g (x ) (где a > 0, a ≠ 1) равносильно уравнению f (x ) = g (x ).

Помимо этого, полезно помнить об основных формулах и действиях со степенями:

Title="Rendered by QuickLaTeX.com">

Пример 1. Решите уравнение:

Решение: используем приведенные выше формулы и подстановку:

Уравнение тогда принимает вид:

Дискриминант полученного квадратного уравнения положителен:

Title="Rendered by QuickLaTeX.com">

Это означает, что данное уравнение имеет два корня. Находим их:

Переходя к обратной подстановке, получаем:

Второе уравнение корней не имеет, поскольку показательная функция строго положительна на всей области определения. Решаем второе:

С учетом сказанного в теореме 1 переходим к эквивалентному уравнению: x = 3. Это и будет являться ответом к заданию.

Ответ: x = 3.

Пример 2. Решите уравнение:

Решение: ограничений на область допустимых значений у уравнения нет, так как подкоренное выражение имеет смысл при любом значении x (показательная функция y = 9 4 -x положительна и не равна нулю).

Решаем уравнение путем равносильных преобразований с использованием правил умножения и деления степеней:

Последний переход был осуществлен в соответствии с теоремой 1.

Ответ: x = 6.

Пример 3. Решите уравнение:

Решение: обе части исходного уравнения можно поделить на 0,2 x . Данный переход будет являться равносильным, поскольку это выражение больше нуля при любом значении x (показательная функция строго положительна на своей области определения). Тогда уравнение принимает вид:

Ответ: x = 0.

Пример 4. Решите уравнение:

Решение: упрощаем уравнение до элементарного путем равносильных преобразований с использованием приведенных в начале статьи правил деления и умножения степеней:

Деление обеих частей уравнения на 4 x , как и в предыдущем примере, является равносильным преобразованием, поскольку данное выражение не равно нулю ни при каких значениях x .

Ответ: x = 0.

Пример 5. Решите уравнение:

Решение: функция y = 3 x , стоящая в левой части уравнения, является возрастающей. Функция y = —x -2/3, стоящая в правой части уравнения, является убывающей. Это означает, что если графики этих функций пересекаются, то не более чем в одной точке. В данном случае нетрудно догадаться, что графики пересекаются в точке x = -1. Других корней не будет.

Ответ: x = -1.

Пример 6. Решите уравнение:

Решение: упрощаем уравнение путем равносильных преобразований, имея в виду везде, что показательная функция строго больше нуля при любом значении x и используя правила вычисления произведения и частного степеней, приведенные в начале статьи:

Ответ: x = 2.

Решение показательных неравенств

Показательными называются неравенства, в которых неизвестная переменная содержится только в показателях каких-либо степеней.

Для решения показательных неравенств требуется знание следующей теоремы:

Теорема 2. Если a > 1, то неравенство a f (x ) > a g (x ) равносильно неравенству того же смысла: f (x ) > g (x ). Если 0 < a < 1, то показательное неравенство a f (x ) > a g (x ) равносильно неравенству противоположного смысла: f (x ) < g (x ).

Пример 7. Решите неравенство:

Решение: представим исходное неравенство в виде:

Разделим обе части этого неравенства на 3 2x , при этом (в силу положительности функции y = 3 2x ) знак неравенства не изменится:

Воспользуемся подстановкой:

Тогда неравенство примет вид:

Итак, решением неравенства является промежуток:

переходя к обратной подстановке, получаем:

Левое неравенства в силу положительности показательной функции выполняется автоматически. Воспользовавшись известным свойством логарифма, переходим к эквивалентному неравенству:

Поскольку в основании степени стоит число, большее единицы, эквивалентным (по теореме 2) будет переход к следующему неравенству:

Итак, окончательно получаем ответ:

Пример 8. Решите неравенство:

Решение: используя свойства умножения и деления степеней, перепишем неравенство в виде:

Введем новую переменную:

С учетом этой подстановки неравенство принимает вид:

Умножим числитель и знаменатель дроби на 7, получаем следующее равносильное неравенство:

Итак, неравенству удовлетворяют следующие значения переменной t :

Тогда, переходя к обратной подстановке, получаем:

Поскольку основание степени здесь больше единицы, равносильным (по теореме 2) будет переход к неравенству:

Окончательно получаем ответ:

Пример 9. Решите неравенство:

Решение:

Делим обе части неравенства на выражение:

Оно всегда больше нуля (из-за положительности показательной функции), поэтому знак неравенства изменять не нужно. Получаем:

t , находящиеся в промежутке:

Переходя к обратной подстановке получаем, что исходное неравенство распадается на два случая:

Первое неравенство решений не имеет в силу положительности показательной функции. Решаем второе:

Пример 10. Решите неравенство:

Решение:

Ветви параболы y = 2x +2-x 2 направлены вниз, следовательно она ограничена сверху значением, которое она достигает в своей вершине:

Ветви параболы y = x 2 -2x +2, стоящей в показателе, направлены вверх, значит она ограничена снизу значением, которое она достигает в своей вершине:

Вместе с этим ограниченной снизу оказывается и функция y = 3 x 2 -2x +2 , стоящая в правой части уравнения. Она достигает своего наименьшего значения в той же точке, что и парабола, стоящая в показателе, и это значение равно 3 1 = 3. Итак, исходное неравенство может оказаться верным только в том случае, если функция слева и функция справа принимают в одной точке значение, равное 3 (пересечением областей значений этих функций является только это число). Это условие выполняется в единственной точке x = 1.

Ответ: x = 1.

Для того, чтобы научиться решать показательные уравнения и неравенства, необходимо постоянно тренироваться в их решении. В этом нелегком деле вам могут помочь различные методические пособия, задачники по элементарной математике, сборники конкурсных задач, занятия по математике в школе, а также индивидуальные занятия с профессиональным репетитором. Искренне желаю вам успехов в подготовке и блестящих результатов на экзамене.


Сергей Валерьевич

P. S. Уважаемые гости! Пожалуйста, не пишите в комментариях заявки на решение ваших уравнений. К сожалению, на это у меня совершенно нет времени. Такие сообщения будут удалены. Пожалуйста, ознакомьтесь со статьёй. Возможно, в ней вы найдёте ответы на вопросы, которые не позволили вам решить своё задание самостоятельно.