Получение кислорода в промышленности. Кислород и его получение

Неисчерпаемым источником кислорода являтся воздух. Чтобы получить из него кислород, следует отделить этот газ от азота и других газов. На такой идее основан промышленный метод получения кислорода. Его реализуют, используя специальную, достаточно громоздкую аппаратуру. Сначала воздух сильно охлаждают до превращения его в жидкость. Затем температуру сжиженного воздуха постепенно повышают. Первым из него начинает выделяться газ азот (температура кипения жидкого азота составляет -196 °С), а жидкость обогащается кислородом.

Получение кислорода в лаборатории . Лабораторные методы получения кислорода основаны на химических реакциях.

Дж. Пристли получал этот газ из соединения, название которого - меркурий(II) оксид. Ученый использовал стеклянную линзу, с помощью которой фокусировал на веществе солнечный свет.

В современном исполнении этот опыт изображен на рисунке 54. При нагревании меркурий(||) оксид (порошок желтого цвета) превращается в ртуть и кислород. Ртуть выделяется в газообразном состоянии и конденсируется на стенках пробирки в виде серебристых капель. Кислород собирается над водой во второй пробирке.

Сейчас метод Пристли не используют, поскольку пары ртути токсичны. Кислород получают с помощью других реакций, подобных рассмотренной. Они, как правило, происходят при нагревании.

Реакции, при которых из одного вещества образуются несколько других, называют реакциями разложения.

Для получения кислорода в лаборатории используют такие оксигенсодержащие соединения:

Калий перманганат KMnO4 (бытовое название марганцовка; вещество является распространенным дезинфицирующим средством)

Калий хлорат KClO3 (тривиальное название - бертолетова соль, в честь французского химика конца XVIII - начала XIX в. К.-Л. Бертолле)

Небольшое количество катализатора - манган (IV) оксида MnO2 - добавляют к калий хлорату для того, чтобы разложение соединения происходило с выделением кислорода1.

Строение молекул гидридов халькогенов Н2Э можно проанализировать с помощью метода молекулярных орбиталей (МО). В качестве примера рассмотрим схему молекулярных орбиталей молекулы воды (рис.3)

Для построения (Подробнее см. Г. Грей "Электроны и химическая связь",М., изд-во "Мир", 1967, с.155-62 и G. L.Miessier, D. A.Tarr, "Inorganic Chemistry", Prantice Hall Int. Inc., 1991, p.153-57) схемы МО молекулы Н2О совместим начало координат с атомом кислорода, а атомы водорода расположим в плоскости xz (рис.3). Перекрывание 2s- и 2p-АО кислорода с 1s-АО водорода показано на рис.4. В формировании МО принимают участие АО водорода и кислорода, обладающие одинаковой симметрией и близкими энергиями. Однако вклад АО в образование МО разный, что отражается в разных величинах коэффициентов в соответствующих линейных комбинациях АО. Взаимодействие (перекрывание) 1s-АО водорода, 2s - и 2рz-АО кислорода приводит к образованию 2a1-связывающей и 4a1-разрыхляющей МО.

Кислород появился в земной атмосфере с возникновением зелёных растений и фотосинтезирующих бактерий. Благодаря кислороду аэробными организмами осуществляется дыхание или окисление. Важно получение кислорода в промышленности – он используется в металлургии, медицине, авиации, народном хозяйстве и других отраслях.

Свойства

Кислород - восьмой элемент периодической таблицы Менделеева. Это газ, поддерживающий горение и осуществляющий окисление веществ.

Рис. 1. Кислород в таблице Менделеева.

Официально кислород был открыт в 1774 году. Английский химик Джозеф Пристли выделил элемент из оксида ртути:

2HgO → 2Hg + O 2 .

Однако Пристли не знал, что кислород является частью воздуха. Свойства и нахождение в атмосфере кислорода позже уставил коллега Пристли - французский химик Антуан Лавуазье.

Общая характеристика кислорода:

  • бесцветный газ;
  • не имеет запаха и вкуса;
  • тяжелее воздуха;
  • молекула состоит из двух атомов кислорода (О 2);
  • в жидком состоянии имеет бледно-голубой цвет;
  • плохо растворим в воде;
  • является сильным окислителем.

Рис. 2. Жидкий кислород.

Присутствие кислорода легко проверить, опустив в сосуд с газом тлеющую лучину. При наличии кислорода лучина вспыхивает.

Как получают

Известно несколько способов получения кислорода из различных соединений в промышленных и лабораторных условиях. В промышленности кислород получают из воздуха путём его сжижения под давлением и при температуре в -183°С. Жидкий воздух подвергают испарению, т.е. постепенно нагревают. При -196°C азот начинает улетучиваться, а кислород сохраняет жидкое состояние.

В лаборатории кислород образуется из солей, пероксида водорода и в результате электролиза. Разложение солей происходит при нагревании. Например, хлорат калия или бертолетову соль нагревают до 500°С, а перманганат калия или марганцовку - до 240°С:

  • 2KClO 3 → 2KCl + 3O 2 ;
  • 2KMnO 4 → K 2 MnO 4 + MnO 2 + O 2 .

Рис. 3. Нагревание бертолетовой соли.

Также можно получить кислород путём нагревания селитры или нитрата калия:

2KNO 3 → 2KNO 2 + O 2 .

При разложении пероксида водорода используется оксид марганца (IV) - MnO 2 , углерод или порошок железа в качестве катализатора. Общее уравнение выглядит следующим образом:

2Н 2 О 2 → 2Н 2 О + О 2 .

Электролизу подвергается раствор гидроксида натрия. В результате образуется вода и кислород:

4NaOH → (электролиз) 4Na + 2H 2 O + O 2 .

Также кислород с помощью электролиза выделяют из воды, разложив её на водород и кислород:

2H 2 O → 2H 2 + O 2 .

На атомных подводных лодках кислород получали из пироксида натрия - 2Na 2 O 2 + 2CO 2 → 2Na 2 CO 3 + O 2 . Способ интересен тем, что вместе с выделением кислорода поглощается углекислый газ.

Как применяют

Собирание и распознавание необходимо для выделения чистого кислорода, использующегося в промышленности для окисления веществ, а также для поддержания дыхания в космосе, под водой, в задымлённых помещениях (кислород необходим пожарным). В медицине баллоны кислорода помогают дышать пациентам с затруднённым дыханием. Также кислород используется для лечения респираторных заболеваний.

Кислород применяют для сжигания топлива - угля, нефти, природного газа. Кислород широко применяется в металлургии и машиностроении, например, для плавки, резки и сварки металла.

Средняя оценка: 4.9 . Всего получено оценок: 177.

Здравствуйте. Вы уже читали мои статьи в блоге Tutoronline.ru. Сегодня я расскажу Вам о кислороде и о способах его получения. Напоминаю, если у Вас будут ко мне вопросы, Вы можете писать их в комментариях к статье. Если же Вам понадобиться любая помощь по химии, записывайтесь на мои занятия в расписании . Буду рад Вам помочь.

Кислород распространён в природе в виде изотопов 16 О, 17 О, 18 О, которые имеют следующее процентное содержание на Земле – 99,76%, 0,048%, 0,192% соответственно.

В свободном состоянии кислород находится в виде трёх алло-тропных модификаций : атомарного кислорода - О о, дикислорода – О 2 и озона – О 3 . Причём, атомарный кислород может быть получен следующим образом:

КClO 3 = KCl + 3O 0

KNO 3 = KNO 2 + O 0

Кислород входит в состав более 1400 различных минералов и органических веществ, в атмосфере его содержание составляет 21% по объёму. А в человеческом теле содержится до 65% кислорода. Кислород газ без цвета и запаха, мало растворим в воде (в 100 объёмах воды при 20 о С растворяется 3 объёма кислорода).

В лаборатории кислород получают умеренным нагреванием некоторых веществ:

1) При разложении соединений марганца (+7) и (+4):

2KMnO 4 → K 2 MnO 4 + MnO 2 + O 2
перманганат манганат
калия калия

2MnO 2 → 2MnO + O 2

2) При разложении перхлоратов:

2KClO 4 → KClO 2 + KCl + 3O 2
перхлорат
калия

3) При разложении бертолетовой соли (хлората калия) .
При этом образуется атомарный кислород:

2KClO 3 → 2 KCl + 6O 0
хлорат
калия

4) При разложении на свету солей хлорноватистой кислоты - гипохлоритов:

2NaClO → 2NaCl + O 2

Ca(ClO) 2 → CaCl 2 + O 2

5) При нагревании нитратов.
При этом образуется атомарный кислород. В зависимости от того, какое положение в ряду активности занимает металл нитрата, образуются различные продукты реакции:

2NaNO 3 → 2NaNO 2 + O 2

Ca(NO 3) 2 → CaO + 2NO 2 + O 2

2AgNO 3 → 2 Ag + 2NO 2 + O 2

6) При разложении пероксидов:

2H 2 O 2 ↔ 2H 2 O + O 2

7) При нагревании оксидов неактивных металлов:

2Аg 2 O ↔ 4Аg + O 2

Данный процесс имеет актуальное значение в быту. Дело в том, что посуда, изготовленная из меди или серебра, имея естественный слой оксидной плёнки, при нагревании образует активный кислород, что является антибактериальным эффектом. Растворение солей неактивных металлов, особенно нитратов, также приводит к образованию кислорода. Например, суммарный процесс растворения нитрата серебра можно представить по этапам:

AgNO 3 + H 2 O → AgOH + HNO 3

2AgOH → Ag 2 O + O 2

2Ag 2 O → 4Ag + O 2

или в суммарном виде:

4AgNO 3 + 2H 2 O → 4Ag + 4HNO 3 + 7O 2

8) При нагревании солей хрома высшей степени окисления:

4K 2 Cr 2 O 7 → 4K 2 CrO 4 + 2Cr 2 O 3 + 3 O 2
бихромат хромат
калия калия

В промышленности кислород получают:

1) Электролитическим разложением воды:

2Н 2 О → 2Н 2 + О 2

2) Взаимодействием углекислого газа с пероксидами:

СО 2 + К 2 О 2 →К 2 СО 3 + О 2

Данный способ представляет собой незаменимое техническое решение проблемы дыхания в изолированных системах: подводных лодках, шахтах, космических аппаратах.

3) При взаимодействии озона с восстановителями:

О 3 + 2КJ + H 2 O → J 2 + 2KOH + O 2


Особое значение получение кислорода имеет место в процессе фотосинтеза
, происходящего в растениях. Кардинальным образом от этого процесса зависит вся жизнь на Земле. Фотосинтез – сложный многоступенчатый процесс. Начало ему даёт свет. Сам фотосинтез состоит из двух фаз: световой и темновой. В световую фазу пигмент хлорофилл, содержащийся в листьях растений, образует так называемый «светопоглощающий» комплекс», который отнимает электроны у воды, и тем самым расщепляет её на ионы водорода и кислород:

2Н 2 О = 4е + 4Н + О 2

Накопившиеся протоны способствуют синтезу АТФ:

АДФ + Ф = АТФ

В темновую фазу происходит преобразование углекислого газа и воды в глюкозу. И побочно выделяется кислород:

6СО 2 + 6Н 2 О = С 6 Н 12 О 6 + О 2

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

При и резке металла осуществляется высокотемпературным газовым пламенем, получаемым при сжигании горючего газа или паров жидкости в смеси с технически чистым кислородом.

Кислород является самым распространенным элементом на земле , встречающимся в виде химических соединений с различными веществами: в земле - до 50% по массе, в соединении с водородом в воде - около 86% по массе и в воздухе - до 21% по объему и 23% по массе.

Кислород при нормальных условиях (температура 20°С, давление 0,1 МПа) - это бесцветный, негорючий газ, немного тяжелее воздуха, не имеющий запаха, но активно поддерживающий горение. При нормальном атмосферном давлении и температуре 0°С масса 1 м 3 кислорода равна 1,43 кг, а при температуре 20°С и нормальном атмосферном давлении - 1,33 кг.

Кислород имеет высокую химическую активность , образуя соединения со всеми химическими элементами, кроме (аргона, гелия, ксенона, криптона и неона). Реакции соединения с кислородом протекают с выделением большого количества теплоты, т. е. носят экзотермический характер.

При соприкосновении сжатого газообразного кислорода с органическими веществами, маслами, жирами, угольной пылью, горючими пластмассами может произойти их самовоспламенение в результате выделения теплоты при быстром сжатии кислорода, трении и ударе твердых частиц о металл, а также электростатического искрового разряда. Поэтому при использовании кислорода необходимо тщательно следить за тем, чтобы он не находился в контакте с легковоспламеняющимися и горючими веществами.

Всю кислородную аппаратуру, кислородопроводы и баллоны необходимо тщательно обезжиривать. способен образовывать в широких пределах взрывчатые смеси с горючими газами или парами жидких горючих, что также может привести к взрывам при наличии открытого огня или даже искры.

Отмеченные особенности кислорода следует всегда иметь в виду при использовании его в процессах газопламенной обработки.

Атмосферный воздух в основном представляет собой механическую смесь трех газов при следующем их объемном содержании: азота - 78,08%, кислорода - 20,95%, аргона-0,94%, остальное - углекислый газ, закись азота и др. Кислород получают разделением воздуха на кислород и методом глубокого охлаждения (сжижения), попутно идет отделение аргона, применение которого при непрерывно возрастает. Азот применяют как защитный газ при сварке меди.

Кислород можно получать химическим способом или электролизом воды. Химические способы малопроизводительны и неэкономичны. При электролизе воды постоянным током кислород получают как побочный продукт при производстве чистого водорода.

В промышленности кислород получают из атмосферного воздуха методом глубокого охлаждения и ректификации. В установках для получения кислорода и азота из воздуха последний очищают от вредных примесей, сжимают в компрессоре до соответствующего давления холодильного цикла 0,6-20 МПа и охлаждают в теплообменниках до температуры сжижения, разница в температурах сжижения кислорода и азота составляет 13°С, что достаточно для их полного разделения в жидкой фазе.

Жидкий чистый кислород накапливается в воздухоразделительном аппарате, испаряется и собирается в газгольдере, откуда компрессором его накачивают в баллоны под давлением до 20 МПа.

Технический кислород транспортируют также по трубопроводу. Давление кислорода, транспортируемого по трубопроводу, должно быть согласовано между изготовителем и потребителем. К месту кислород доставляется в кислородных баллонах, и в жидком виде - в специальных сосудах с хорошей теплоизоляцией.

Для превращения жидкого кислорода в газ используют газификаторы или насосы с испарителями для жидкого кислорода. При нормальном атмосферном давлении и температуре 20°С 1 дм 3 жидкого кислорода при испарении дает 860 дм 3 газообразного. Поэтому доставлять кислород к месту сварки целесообразно в жидком состоянии, так как при этом в 10 раз уменьшается масса тары, что позволяет экономить металл на изготовление баллонов, уменьшать расходы на транспортировку и хранение баллонов.

Для сварки и резки по -78 технический кислород выпускается трех сортов:

  • 1-й - чистотой не менее 99,7%
  • 2-й - не менее 99,5%
  • 3-й - не менее 99,2% по объему

Чистота кислорода имеет большое значение для кислородной резки. Чем меньше содержится в нем газовых примесей, тем выше скорость реза, чище и меньше расход кислорода.

В уроке 17 «Получение кислорода » из курса «Химия для чайников » выясним, как получают кислород в лабораторных условиях; узнаем, что такое катализатор, и как растения влияют на производство кислорода на нашей планете.

Наиболее важным для человека и других живых организмов веществом, входящим в состав воздуха, является кислород. Большие количества кислорода используются в промышленности, поэтому важно знать, как можно его получать.

В химической лаборатории кислород можно получать нагреванием некоторых сложных веществ, в состав которых входят атомы кислорода. К числу таких веществ относится вещество KMnO 4 , которое имеется в вашей домашней аптечке под названием «марганцовка».

Вы знакомы с простейшими приборами для получения газов. Если в один из таких приборов поместить немного порошка KMnO 4 и нагреть, то будет выделяться кислород (рис. 76):

Кислород можно также получить разложением пероксида водорода H 2 O 2 . Для этого в пробирку с H 2 O 2 следует добавить очень небольшое количество особого вещества - катализатора - и закрыть пробирку пробкой с газоотводной трубкой (рис. 77).

Для данной реакции катализатором является вещество, формула которого MnO 2 . При этом протекает следующая химическая реакция:

Обратите внимание на то, что ни в левой, ни в правой частях уравнения формулы катализатора нет. Его формулу принято записывать в уравнении реакции над знаком равенства. Для чего же добавляется катализатор? Процесс разложения H 2 O 2 при комнатных условиях протекает очень медленно. Поэтому для получения заметных количеств кислорода необходимо много времени. Однако эту реакцию можно резко ускорить путем прибавления катализатора.

Катализатор - это вещество, которое ускоряет химическую реакцию, но само в ней не расходуется.

Именно потому, что катализатор не расходуется в реакции, мы не записываем его формулу ни в одной из частей уравнения реакции.

Еще один способ получения кислорода - разложение воды под действием постоянного электрического тока. Этот процесс называется электролизом воды. Получить кислород можно в приборе, схематично изображенном на рисунке 78.

При этом протекает следующая химическая реакция:

Кислород в природе

Огромное количество газообразного кислорода содержится в атмосфере, растворено в водах морей и океанов. Кислород необходим всем живым организмам для дыхания. Без кислорода невозможно было бы получать энергию за счет сжигания различных видов топлива. На эти нужды ежегодно расходуется примерно 2% атмосферного кислорода.

Откуда берется кислород на Земле и почему его количество остается примерно постоянным, несмотря на такой расход? Единственным источником кислорода на нашей планете являются зеленые растения, производящие его под действием солнечного света в процессе фотосинтеза. Это очень сложный процесс, включающий много стадий. В результате фотосинтеза в зеленых частях растений углекислый газ и вода превращаются в глюкозу C 6 H 12 O 6 и кислород. Суммарное
уравнение реакций, протекающих в процессе фотосинтеза, можно представить следующим образом:

Установлено, что примерно одну десятую часть (11%) производимого зелеными растениями кислорода дают наземные растения, а остальные девять десятых (89%) - водные растения.

Получение кислорода и азота из воздуха

Огромные запасы кислорода в атмосфере позволяют получать и использовать его в различных производствах. В промышленных условиях кислород, азот и некоторые другие газы (аргон, неон) получают из воздуха.

Для этого воздух сначала превращают в жидкость (рис. 79) путем охлаждения до такой низкой температуры, при которой все его компоненты переходят в жидкое агрегатное состояние.

Затем эту жидкость медленно нагревают, в результате чего при разных температурах происходит последовательное выкипание (т. е. переход в газообразное состояние) веществ, которые содержатся в воздухе. Собирая выкипающие при разных температурах газы, по отдельности получают азот, кислород и другие вещества.

Краткие выводы урока:

  1. В лабораторных условиях кислород получают разложением некоторых сложных веществ, в состав которых входят атомы кислорода.
  2. Катализатор - вещество, которое ускоряет протекание химической реакции, но само при этом не расходуется.
  3. Источником кислорода на нашей планете являются зеленые растения, в которых протекает процесс фотосинтеза.
  4. В промышленности кислород получают из воздуха.

Надеюсь урок 17 «Получение кислорода » был понятным и познавательным. Если у вас возникли вопросы, пишите их в комментарии.