Системы дифференциальных уравнений. Как решить систему дифференциальных уравнений

Как решить систему дифференциальных уравнений?

Предполагается, что читатель уже неплохо умеет решать дифференциальные уравнения, в частности, однородные уравнения второго порядка и неоднородные уравнения второго порядка с постоянными коэффициентами. В системах дифференциальных уравнений нет ничего сложного, и если вы уверенно расправляетесь с вышеуказанными типами уравнений, то освоение систем не составит особого труда.

Существуют два основных типа систем дифференциальных уравнений:

– Линейные однородные системы дифференциальных уравнений
– Линейные неоднородные системы дифференциальных уравнений

И два основных способа решения системы дифференциальных уравнений:

– Метод исключения . Суть метода состоит в том, что в ходе решения система ДУ сводится к одному дифференциальному уравнению.

– С помощью характеристического уравнения (так называемый метод Эйлера).

В подавляющем большинстве случаев систему дифференциальных уравнений требуется решить первым способом. Второй способ в условиях задач встречается значительно реже, за всю мою практику я решил им от силы 10-20 систем. Но и его тоже коротко рассмотрим в последнем параграфе данной статьи.

Сразу прошу прощения за теоретическую неполноту материала, но зато я включил в урок только те задания, которые реально могут встретиться на практике. То, что выпадает метеоритным дождем раз в пятилетку, вы вряд ли здесь найдете, и с такими нежданчиками следует обратиться к специализированным кирпичам по диффурам.

Линейные однородные системы дифференциальных уравнений

Простейшая однородная система дифференциальных уравнений имеет следующий вид:

Собственно, почти все практические примеры такой системой и ограничиваются =)

Что тут есть?

– это числа (числовые коэффициенты). Самые обычные числа. В частности, один, несколько или даже все коэффициенты могут быть нулевыми. Но такие подарки подкидывают редко, поэтому числа чаще всего не равны нулю.

И – это неизвестные функции. В качестве независимой переменной выступает переменная – это «как бы икс в обычном дифференциальном уравнении».

И – первые производные неизвестных функций и соответственно.

Что значит решить систему дифференциальных уравнений?

Это значит, найти такие функции и , которые удовлетворяют и первому и второму уравнению системы. Как видите, принцип очень похож на обычные системы линейных уравнений . Только там корнями являются числа, а здесь – функции.

Найденный ответ записывают в виде общего решения системы дифференциальных уравнений :

В фигурных скобках! Эти функции находятся «в одной упряжке».

Для системы ДУ можно решить задачу Коши, то есть, найти частное решение системы , удовлетворяющее заданным начальным условиям. Частное решение системы тоже записывают с фигурными скобками.

Более компактно систему можно переписать так:

Но в ходу традиционно более распространен вариант решения с производными, расписанными в дифференциалах, поэтому, пожалуйста, сразу привыкайте к следующим обозначениям:
и – производные первого порядка;
и – производные второго порядка.

Пример 1

Решить задачу Коши для системы дифференциальных уравнений с начальными условиями , .

Решение: В задачах чаще всего система встречается с начальными условиями, поэтому почти все примеры данного урока будут с задачей Коши. Но это не важно, поскольку общее решение по ходу дела все равно придется найти.

Решим систему методом исключения . Напоминаю, что суть метода – свести систему к одному дифференциальному уравнению. А уж дифференциальные уравнения, надеюсь, вы решаете хорошо.

Алгоритм решения стандартен:

1) Берем второе уравнение системы и выражаем из него :

Данное уравнение нам потребуется ближе к концу решения, и я помечу его звёздочкой. В учебниках, бывает, натыкают 500 обозначений, а потом ссылаются: «по формуле (253)…», и ищи эту формулу где-нибудь через 50 страниц сзади. Я же ограничусь одной единственной пометкой (*).

2) Дифференцируем по обе части полученного уравнения :

Со «штрихами» процесс выглядит так:

Важно, чтобы этот простой момент был понятен, далее я не буду на нём останавливаться.

3) Подставим и в первое уравнение системы :

И проведём максимальные упрощения:

Получено самое что ни на есть обычное однородное уравнение второго порядка с постоянными коэффициентами. Со «штрихами» оно записывается так: .



– получены различные действительные корни, поэтому:
.

Одна из функций найдена, пол пути позади.

Да, обратите внимание, что у нас получилось характеристическое уравнение с «хорошим» дискриминантом, а значит, мы ничего не напутали в подстановке и упрощениях.

4) Идём за функцией . Для этого берём уже найденную функцию и находим её производную. Дифференцируем по :

Подставим и в уравнение (*):

Или короче:

5) Обе функции найдены, запишем общее решение системы:

Ответ: частное решение:

Полученный ответ достаточно легко проверить, проверку осуществим в три шага:

1) Проверяем, действительно ли выполняются начальные условия , :


Оба начальных условия выполняются.

2) Проверим, удовлетворяет ли найденный ответ первому уравнению системы .

Берём из ответа функцию и находим её производную:

Подставим , и в первое уравнение системы:

Получено верное равенство, значит, найденный ответ удовлетворяет первому уравнению системы.

3) Проверим, удовлетворяет ли ответ второму уравнению системы

Берём из ответа функцию и находим её производную:

Подставим , и во второе уравнение системы:

Получено верное равенство, значит, найденный ответ удовлетворяет второму уравнению системы.

Проверка завершена. Что проверено? Проверено выполнение начальных условий. И, самое главное, показан тот факт, что найденное частное решение удовлетворяет каждому уравнению исходной системы .

Аналогично можно проверить и общее решение , проверка будет даже еще короче, так как не надо проверять выполнение начальных условий.

Теперь вернемся к прорешанной системе и зададимся парой вопросов. Решение начиналось так: мы взяли второе уравнение системы и выразили из него . А можно ли было выразить не «икс», а «игрек»? Если мы выразим , то это нам ничего не даст – в данном выражении справа есть и «игрек» и «икс», поэтому нам не удастся избавиться от переменной и свести решение системы к решению одного дифференциального уравнения.

Вопрос второй. Можно ли было начать решение не со второго, а с первого уравнения системы? Можно. Смотрим на первое уравнение системы: . В нём у нас два «икса» и один «игрек», поэтому необходимо выразить строго «игрек» через «иксы»: . Далее находится первая производная: . Потом следует подставить и во второе уравнение системы. Решение будет полностью равноценным, с тем отличием, что сначала мы найдем функцию , а затем .

И как раз на второй способ будет пример для самостоятельного решения:

Пример 2

Найти частное решение системы дифференциальных уравнений, удовлетворяющее заданным начальным условиям.

В образце решения, который приведен в конце урока, из первого уравнения выражен и вся пляска начинается от этого выражения. Попытайтесь самостоятельно по пунктам провести зеркальное решение, не заглядывая в образец.

Можно пойти и путём Примера №1 – из второго уравнения выразить (заметьте, что выразить следует именно «икс»). Но этот способ менее рационален, по той причине, что у нас получилась дробь, что не совсем удобно.

Линейные неоднородные системы дифференциальных уравнений

Практически то же самое, только решение будет несколько длиннее.

Неоднородная система дифференциальных уравнений, которая в большинстве случаев может встретиться вам в задачах, имеет следующий вид:

По сравнению с однородной системой в каждом уравнении дополнительно добавляется некоторая функция, зависящая от «тэ». Функции могут быть константами (причем, по крайне мере одна из них не равна нулю), экспонентами, синусами, косинусами и т.д.

Пример 3

Найти частное решение системы линейных ДУ, соответствующее заданным начальным условиям

Решение: Дана линейная неоднородная система дифференциальных уравнений, в качестве «добавок» выступают константы. Используем метод исключения , при этом сам алгоритм решения полностью сохраняется. Для разнообразия я начну как раз с первого уравнения.

1) Из первого уравнения системы выражаем:

Это важная штуковина, поэтому я её снова замаркирую звёздочкой. Скобки лучше не раскрывать, зачем лишние дроби?

И еще раз заметьте, что из первого уравнения выражается именно «игрек» – через два «икса» и константу.

2) Дифференцируем по обе части:

Константа (тройка) исчезла, ввиду того, что производная константы равна нулю.

3) Подставим и во второе уравнение системы :

Сразу после подстановки целесообразно избавиться от дробей, для этого каждую часть уравнения умножаем на 5:

Теперь проводим упрощения:

В результате получено линейное неоднородное уравнение второго порядка с постоянными коэффициентами. Вот, по сути, и всё отличие от решения однородной системы уравнений, разобранного в предыдущем параграфе.

Примечание: Тем не менее, в неоднородной системе иногда может получиться и однородное уравнение .

Найдем общее решение соответствующего однородного уравнения:

Составим и решим характеристическое уравнение:

– получены сопряженные комплексные корни, поэтому:
.

Корни характеристического уравнения опять получились «хорошими», значит, мы на верном пути.

Частное решение неоднородного уравнения ищем в виде .
Найдем первую и вторую производную:

Подставим в левую часть неоднородного уравнения:

Таким образом:

Следует отметить, что частное решение легко подбирается устно, и вполне допустимо вместо длинных выкладок написать: «Очевидно, что частное решение неоднородного уравнения: ».

В результате:

4) Ищем функцию . Сначала находим производную от уже найденной функции :

Не особо приятно, но подобные производные в диффурах приходится находить часто.

Шторм в самом разгаре, и сейчас будет девятый вал. Привяжите себя канатом к палубе.

Подставим
и в уравнение (*):

5) Общее решение системы:

6) Найдем частное решение, соответствующее начальным условиям :

Окончательно, частное решение:

Вот видите, какая история со счастливым концом, теперь можно безбоязненно плавать на шлюпках по безмятежному морю под ласковым солнцем.

Ответ: частное решение:

Кстати, если начать решать эту систему со второго уравнения, то вычисления получатся заметно проще (можете попробовать), но многие посетители сайта просили разбирать и более трудные вещи. Как тут откажешь? =) Пусть будут и более серьезные примеры.

Пример проще для самостоятельного решения:

Пример 4

Найти частное решение линейной неоднородной системы дифференциальных уравнений, соответствующее заданным начальным условиям

Данная задача решена мной по образцу Примера №1, то есть, из второго уравнения выражен «икс». Решение и ответ в конце урока.

В рассмотренных примерах я не случайно использовал различные обозначения, применял разные пути решения. Так, например, производные в одном и том же задании записывались тремя способами: . В высшей математике не нужно бояться всяких закорючек, главное, понимать алгоритм решения.

Метод характеристического уравнения (метод Эйлера)

Как уже отмечалось в начале статьи, с помощью характеристического уравнения систему дифференциальных уравнений требуют решить довольно редко, поэтому в заключительном параграфе я рассмотрю всего лишь один пример.

Пример 5

Дана линейная однородная система дифференциальных уравнений

Найти общее решение системы уравнений с помощью характеристического уравнения

Решение: Смотрим на систему уравнений и составляем определитель второго порядка:

По какому принципу составлен определитель, думаю, всем видно.

Составим характеристическое уравнение, для этого из каждого числа, которое располагается на главной диагонали , вычитаем некоторый параметр :

На чистовике, естественно, сразу следует записать характеристическое уравнение, я объясняю подробно, по шагам, чтобы было понятно, что откуда взялось.

Раскрываем определитель:

И находим корни квадратного уравнения:

Если характеристическое уравнение имеет два различных действительных корня , то общее решение системы дифференциальных уравнений имеет вид:

Коэффициенты в показателях экспонент нам уже известны, осталось найти коэффициенты

1) Рассмотрим корень и подставим его в характеристическое уравнение:

(эти два определителя на чистовике тоже можно не записывать, а сразу устно составить нижеприведенную систему)

Из чисел определителя составим систему двух линейных уравнений с двумя неизвестными:

Из обоих уравнений следует одно и то же равенство:

Теперь нужно подобрать наименьшее значение , такое, чтобы значение было целым. Очевидно, что следует задать . А если , то

Многие системы дифференциальных уравнений, как однородные, так и неоднородные, могут быть сведены к одному уравнению относительно одной неизвестной функции. Покажем метод на примерах.

Пример 3.1. Решить систему

Решение. 1) Дифференцируя по t первое уравнение и используя второе и третье уравнения для замены и, находим

Полученное уравнение дифференцируем по еще раз

1) Составляем систему

Из первых двух уравнений системы выразим переменные ичерез
:

Подставим найденные выражения для ив третье уравнение системы

Итак, для нахождения функции
получили дифференциальное уравнение третьего порядка с постоянными коэффициентами

.

2) Интегрируем последнее уравнение стандартным методом: составляем характеристическое уравнение
, находим его корни
и строим общее решение в виде линейной комбинации экспонент, учитывая кратность одного из корней:.

3) Далее, чтобы найти две оставшиеся функции
и
, дифференцируем дважды полученную функцию

Используя связи (3.1) между функциями системы, восстанавливаем оставшиеся неизвестные

.

Ответ. ,
,.

Может оказаться, что все известные функции кроме одной исключаются из системы третьего порядка уже при однократном дифференцировании. В таком случае, порядок дифференциального уравнения для ее нахождения будет меньше, чем число неизвестных функций в исходной системе.

Пример 3.2. Проинтегрировать систему

(3.2)

Решение. 1) Дифференцируя по первое уравнение, находим

Исключая переменные ииз уравнений

будем иметь уравнение второго порядка относительно

(3.3)

2) Из первого уравнения системы (3.2) имеем

(3.4)

Подставляя в третье уравнение системы (3.2) найденные выражения (3.3) и (3.4) для и, получим дифференциальное уравнение первого порядка для определения функции

Интегрируя это неоднородное уравнение с постоянными коэффициентами первого порядка, найдем
Используя (3.4), находим функцию

Ответ.
,,
.

Задание 3.1. Решить однородные системы сведением к одному дифференциальному уравнению.

3.1.1. 3.1.2.

3.1.3. 3.1.4.

3.1.5. 3.1.6.

3.1.7. 3.1.8.

3.1.9. 3.1.10.

3.1.11. 3.1.12.

3.1.13. 3.1.14.

3.1.15. 3.1.16.

3.1.17. 3.1.18.

3.1.19. 3.1.20.

3.1.21. 3.1.22.

3.1.23. 3.1.24.

3.1.25. 3.1.26.

3.1.27. 3.1.28.

3.1.29.
3.1.30.

3.2. Решение систем линейных однородных дифференциальных уравнений с постоянными коэффициентами с помощью нахождения фундаментальной системы решений

Общее решение системы линейных однородных дифференциальных уравнений может быть найдено как линейная комбинация фундаментальных решений системы. В случае систем с постоянными коэффициентами для нахождения фундаментальных решений могут быть использованы методы линейной алгебры.

Пример 3.3. Решить систему

(3.5)

Решение. 1) Перепишем систему в матричном виде

. (3.6)

2) Будем искать фундаментальное решение системы в виде вектора
. Подставляя функции
в (3.6) и сокращая на, получим

, (3.7)

то есть число должно быть собственным числом матрицы
, а векторсоответствующим собственным вектором.

3) Из курса линейной алгебры известно, что система (3.7) имеет нетривиальное решение, если ее определитель равен нулю

,

то есть . Отсюда находим собственные значения
.

4) Найдем соответствующие собственные векторы. Подставляя в (3.7) первое значение
, получим систему для нахождения первого собственного вектора

Отсюда получаем связь между неизвестными
. Нам достаточно выбрать одно нетривиальное решение. Полагая
, тогда
, то есть векторявляется собственным для собственного значения
, а вектор функции
фундаментальным решением заданной системы дифференциальных уравнений (3.5). Аналогично, при подстановке второго корня
в (3.7) имеем матричное уравнение для второго собственного вектора
. Откуда получаем связь между его компонентами
. Таким образом, имеем второе фундаментальное решение

.

5) Общее решение системы (3.5) строится как линейная комбинация двух полученных фундаментальных решений

или в координатном виде

.

Ответ.

.

Задание 3.2. Решить системы, находя фундаментальную систему решений.

На дворе знойная пора, летает тополиный пух, и такая погода располагает к отдыху. За учебный год у всех накопилась усталость, но ожидание летних отпусков/каникул должно воодушевлять на успешную сдачу экзаменов и зачетов. По сезону тупят, кстати, и преподаватели, поэтому скоро тоже возьму тайм-аут для разгрузки мозга. А сейчас кофе, мерный гул системного блока, несколько дохлых комаров на подоконнике и вполне рабочее состояние… …эх, блин,… поэт хренов.

К делу. У кого как, а у меня сегодня 1 июня, и мы рассмотрим ещё одну типовую задачу комплексного анализанахождение частного решения системы дифференциальных уравнений методом операционного исчисления . Что необходимо знать и уметь, чтобы научиться её решать? Прежде всего, настоятельно рекомендую обратиться к уроку. Пожалуйста, прочитайте вводную часть, разберитесь с общей постановкой темы, терминологией, обозначениями и хотя бы с двумя-тремя примерами. Дело в том, что с системами диффуров всё будет почти так же и даже проще!

Само собой, вы должны понимать, что такое система дифференциальных уравнений , что значит найти общее решение системы и частное решение системы.

Напоминаю, что систему дифференциальных уравнений можно решить «традиционным» путём: методом исключения или с помощью характеристического уравнения . Способ же операционного исчисления, о котором пойдет речь, применим к системе ДУ, когда задание сформулировано следующим образом:

Найти частное решение однородной системы дифференциальных уравнений , соответствующее начальным условиям .

Как вариант, система может быть и неоднородной – с «довесками» в виде функций и в правых частях:

Но, и в том, и в другом случае нужно обратить внимание на два принципиальных момента условия:

1) Речь идёт только о частном решении .
2) В скобочках начальных условий находятся строго нули , и ничто другое.

Общий ход и алгоритм будет очень похож на решение дифференциального уравнения операционным методом . Из справочных материалов потребуется та же таблица оригиналов и изображений .

Пример 1


, ,

Решение: Начало тривиально: с помощью таблицы преобразования Лапласа перейдем от оригиналов к соответствующим изображениям. В задаче с системами ДУ данный переход обычно прост:

Используя табличные формулы №№1,2, учитывая начальное условие , получаем:

Что делать с «игреками»? Мысленно меняем в таблице «иксы» на «игреки». Используя те же преобразования №№1,2, учитывая начальное условие , находим:

Подставим найденные изображения в исходное уравнение :

Теперь в левых частях уравнений нужно собрать все слагаемые, в которых присутствует или . В правые части уравнений необходимо «оформить» все остальные слагаемые:

Далее в левой части каждого уравнения проводим вынесение за скобки:

При этом на первых позициях следует разместить , а на вторых позициях :

Полученную систему уравнений с двумя неизвестными обычно решают по формулам Крамера . Вычислим главный определитель системы:

В результате расчёта определителя получен многочлен .

Важный технический приём! Данный многочлен лучше сразу же попытаться разложить на множители. В этих целях следовало бы попробовать решить квадратное уравнение , но, у многих читателей намётанный ко второму курсу глаз заметит, что .

Таким образом, наш главный определитель системы:

Дальнейшая разборка с системой, слава Крамеру, стандартна:

В итоге получаем операторное решение системы :

Преимуществом рассматриваемого задания является та особенность, что дроби обычно получаются несложными, и разбираться с ними значительно проще, нежели с дробями в задачах нахождения частного решения ДУ операционным методом . Предчувствие вас не обмануло – в дело вступает старый добрый метод неопределённых коэффициентов , с помощью которого раскладываем каждую дробь на элементарные дроби:

1) Разбираемся с первой дробью:

Таким образом:

2) Вторую дробь разваливаем по аналогичной схеме, при этом корректнее использовать другие константы (неопределенные коэффициенты):

Таким образом:


Чайникам советую записывать разложенное операторное решение в следующем виде:
– так будет понятней завершающий этап – обратное преобразование Лапласа.

Используя правый столбец таблицы, перейдем от изображений к соответствующим оригиналам:


Согласно правилам хорошего математического тона, результат немного причешем:

Ответ:

Проверка ответа осуществляется по стандартной схеме, которая детально разобрана на уроке Как решить систему дифференциальных уравнений? Всегда старайтесь её выполнять, чтобы забить большой плюс в задание.

Пример 2

С помощью операционного исчисления найти частное решение системы дифференциальных уравнений, соответствующее заданным начальным условиям.
, ,

Это пример для самостоятельного решения. Примерный образец чистового оформления задачи и ответ в конце урока.

Решение неоднородной системы дифференциальных уравнений алгоритмически ничем не отличается, разве что технически будет чуть сложнее:

Пример 3

С помощью операционного исчисления найти частное решение системы дифференциальных уравнений, соответствующее заданным начальным условиям.
, ,

Решение: С помощью таблицы преобразования Лапласа, учитывая начальные условия , перейдем от оригиналов к соответствующим изображениям:

Но это ещё не всё, в правых частях уравнений есть одинокие константы. Что делать в тех случаях, когда константа находится сама по себе в полном одиночестве? Об этом уже шла речь на уроке Как решить ДУ операционным методом . Повторим: одиночные константы следует мысленно домножить на единицу , и к единицам применить следующее преобразование Лапласа:

Подставим найденные изображения в исходную систему:

Налево перенесём слагаемые, в которых присутствуют , в правых частях разместим остальные слагаемые:

В левых частях проведём вынесение за скобки, кроме того, приведём к общему знаменателю правую часть второго уравнения:

Вычислим главный определитель системы, не забывая, что результат целесообразно сразу же попытаться разложить на множители:
, значит, система имеет единственное решение.

Едем дальше:



Таким образом, операторное решение системы:

Иногда одну или даже обе дроби можно сократить, причём, бывает, так удачно, что и раскладывать практически ничего не нужно! А в ряде случаев сразу получается халява, к слову, следующий пример урока будет показательным образцом.

Методом неопределенных коэффициентов получим суммы элементарных дробей.

Сокрушаем первую дробь:

И добиваем вторую:

В результате операторное решение принимает нужный нам вид:

С помощью правого столбца таблицы оригиналов и изображений осуществляем обратное преобразование Лапласа:

Подставим полученные изображения в операторное решение системы:

Ответ: частное решение:

Как видите, в неоднородной системе приходится проводить более трудоёмкие вычисления по сравнению с однородной системой. Разберём еще пару примеров с синусами, косинусами, и хватит, поскольку будут рассмотрены практически все разновидности задачи и большинство нюансов решения.

Пример 4

Методом операционного исчисления найти частное решение системы дифференциальных уравнений с заданными начальными условиями ,

Решение: Данный пример я тоже разберу сам, но комментарии будут касаться только особенных моментов. Предполагаю, вы уже хорошо ориентируетесь в алгоритме решения.

Перейдем от оригиналов к соответствующим изображениям:

Подставим найденные изображения в исходную систему ДУ:

Систему решим по формулам Крамера:
, значит, система имеет единственное решение.

Полученный многочлен не раскладывается на множители. Что делать в таких случаях? Ровным счётом ничего. Сойдёт и такой.

В результате операторное решение системы:

А вот и счастливый билет! Метод неопределённых коэффициентов использовать не нужно вообще! Единственное, в целях применения табличных преобразований перепишем решение в следующем виде:

Перейдем от изображений к соответствующим оригиналам:

Подставим полученные изображения в операторное решение системы:

Системы дифференциальных уравнений бывают двух основных типов - линейные однородные и неоднородные. Решать системы дифференциальных уравнений можно также двумя основными способами решения:

  1. Метод исключения, суть которого в том, что в процессе решения система дифуравнений сводится всего лишь к одному дифференциальному уравнению.
  2. При помощи характеристического уравнения или метод Эйлера.

В основном системы дифференциальных уравнений решаются первым способом.

Линейные однородные системы дифференциальных уравнений

Простейшую однородную систему дифференциальных уравнений можно представить в следующем виде:

Где k, l, m, n – это обыкновенные числа, x(t) и y(t) – неизвестные функции. Переменная t играет роль независимой переменной (в обычном дифференциальном уравнении на ее месте обычно встречается х).

И – первые производные неизвестных функций x(t) и y(t) соответственно.

Решить систему дифференциальных уравнений - означает определить такие функции x(t) и y(t), которые удовлетворяют обоим уравнениям системы. Как видно, все очень похоже на обычные системы линейных уравнений, разница лишь в том, что там корни уравнения - это числа, а здесь – функции.

Ответ запишем в виде общего решения системы дифуравнений:

Можно записать систему более компактно:

Самым распространенным является вариант решения с производными, расписанными в дифференциалах, где приняты следующие обозначения:

И – производные 1-го порядка;

И – производные 2-го порядка.

Требуется найти решение задачи Коши для системы дифуравнений при начальных условиях x(0) = 3, y(0) = 0.

При решении будем использовать метод исключения.

Возьмем второе уравнение системы и выразим из него х:

, знак * мы используем для быстрого поиска этого уравнения, т.к. оно нам понадобится в дальнейшем.

Продифференцируем обе части полученного уравнения по t:

По-другому это выглядит следующим образом:

Подставляем и в первое уравнение системы :

Максимально упростим это уравнение:

Как видите, мы получили обыкновенное однородное уравнение второго порядка с постоянными коэффициентами. С производными оно выглядит следующим образом:

.

– мы получили различные действительные корни, поэтому:

.

Одна функция найдена. Теперь приступим к поиску x(t).

Найдем производную найденной функции .

Дифференцируем по t:

Теперь подставим и в уравнение (*):

Упростим полученное уравнение:

Итак, мы нашли обе функции.

Общее решение системы будет:

Теперь займемся поиском частного решения, соответствующего начальным условиям x(0) = 3 и y(0) = 0. Для этого почленно вычитаем из первого уравнения второе.

Подставим найденные коэффициенты:

Это и будет частное решение системы.

Остается провести проверку найденного результата:

Проверим выполнение начальных условий x(0) = 3 и y(0) = 0:

x(0) = 4 - 1 = 3

y(0) = 1 – 1 = 0

Проверка прошла успешно.

Проверим найденный ответ на удовлетворение первому уравнению системы

Возьмем функцию и найдем её производную.

Матричная запись системы обыкновенных дифференциальных уравнений (СОДУ) с постоянными коэффициентами

Линейную однородную СОДУ с постоянными коэффициентами $\left\{\begin{array}{c} {\frac{dy_{1} }{dx} =a_{11} \cdot y_{1} +a_{12} \cdot y_{2} +\ldots +a_{1n} \cdot y_{n} } \\ {\frac{dy_{2} }{dx} =a_{21} \cdot y_{1} +a_{22} \cdot y_{2} +\ldots +a_{2n} \cdot y_{n} } \\ {\ldots } \\ {\frac{dy_{n} }{dx} =a_{n1} \cdot y_{1} +a_{n2} \cdot y_{2} +\ldots +a_{nn} \cdot y_{n} } \end{array}\right. $,

где $y_{1} \left(x\right),\; y_{2} \left(x\right),\; \ldots ,\; y_{n} \left(x\right)$ -- искомые функции независимой переменной $x$, коэффициенты $a_{jk} ,\; 1\le j,k\le n$ -- заданные действительные числа представим в матричной записи:

  1. матрица искомых функций $Y=\left(\begin{array}{c} {y_{1} \left(x\right)} \\ {y_{2} \left(x\right)} \\ {\ldots } \\ {y_{n} \left(x\right)} \end{array}\right)$;
  2. матрица производных решений $\frac{dY}{dx} =\left(\begin{array}{c} {\frac{dy_{1} }{dx} } \\ {\frac{dy_{2} }{dx} } \\ {\ldots } \\ {\frac{dy_{n} }{dx} } \end{array}\right)$;
  3. матрица коэффициентов СОДУ $A=\left(\begin{array}{cccc} {a_{11} } & {a_{12} } & {\ldots } & {a_{1n} } \\ {a_{21} } & {a_{22} } & {\ldots } & {a_{2n} } \\ {\ldots } & {\ldots } & {\ldots } & {\ldots } \\ {a_{n1} } & {a_{n2} } & {\ldots } & {a_{nn} } \end{array}\right)$.

Теперь на основе правила умножения матриц данную СОДУ можно записать в виде матричного уравнения $\frac{dY}{dx} =A\cdot Y$.

Общий метод решения СОДУ с постоянными коэффициентами

Пусть имеется матрица некоторых чисел $\alpha =\left(\begin{array}{c} {\alpha _{1} } \\ {\alpha _{2} } \\ {\ldots } \\ {\alpha _{n} } \end{array}\right)$.

Решение СОДУ отыскивается в следующем виде: $y_{1} =\alpha _{1} \cdot e^{k\cdot x} $, $y_{2} =\alpha _{2} \cdot e^{k\cdot x} $, \dots , $y_{n} =\alpha _{n} \cdot e^{k\cdot x} $. В матричной форме: $Y=\left(\begin{array}{c} {y_{1} } \\ {y_{2} } \\ {\ldots } \\ {y_{n} } \end{array}\right)=e^{k\cdot x} \cdot \left(\begin{array}{c} {\alpha _{1} } \\ {\alpha _{2} } \\ {\ldots } \\ {\alpha _{n} } \end{array}\right)$.

Отсюда получаем:

Теперь матричному уравнению данной СОДУ можно придать вид:

Полученное уравнение можно представить так:

Последнее равенство показывает, что вектор $\alpha $ с помощью матрицы $A$ преобразуется в параллельный ему вектор $k\cdot \alpha $. Это значит, что вектор $\alpha $ является собственным вектором матрицы $A$, соответствующий собственному значению $k$.

Число $k$ можно определить из уравнения$\left|\begin{array}{cccc} {a_{11} -k} & {a_{12} } & {\ldots } & {a_{1n} } \\ {a_{21} } & {a_{22} -k} & {\ldots } & {a_{2n} } \\ {\ldots } & {\ldots } & {\ldots } & {\ldots } \\ {a_{n1} } & {a_{n2} } & {\ldots } & {a_{nn} -k} \end{array}\right|=0$.

Это уравнение называется характеристическим.

Пусть все корни $k_{1} ,k_{2} ,\ldots ,k_{n} $ характеристического уравнения различны. Для каждого значения $k_{i} $ из системы $\left(\begin{array}{cccc} {a_{11} -k} & {a_{12} } & {\ldots } & {a_{1n} } \\ {a_{21} } & {a_{22} -k} & {\ldots } & {a_{2n} } \\ {\ldots } & {\ldots } & {\ldots } & {\ldots } \\ {a_{n1} } & {a_{n2} } & {\ldots } & {a_{nn} -k} \end{array}\right)\cdot \left(\begin{array}{c} {\alpha _{1} } \\ {\alpha _{2} } \\ {\ldots } \\ {\alpha _{n} } \end{array}\right)=0$ может быть определена матрица значений $\left(\begin{array}{c} {\alpha _{1}^{\left(i\right)} } \\ {\alpha _{2}^{\left(i\right)} } \\ {\ldots } \\ {\alpha _{n}^{\left(i\right)} } \end{array}\right)$.

Одно из значений в этой матрице выбирают произвольно.

Окончательно, решение данной системы в матричной форме записывается следующим образом:

$\left(\begin{array}{c} {y_{1} } \\ {y_{2} } \\ {\ldots } \\ {y_{n} } \end{array}\right)=\left(\begin{array}{cccc} {\alpha _{1}^{\left(1\right)} } & {\alpha _{1}^{\left(2\right)} } & {\ldots } & {\alpha _{2}^{\left(n\right)} } \\ {\alpha _{2}^{\left(1\right)} } & {\alpha _{2}^{\left(2\right)} } & {\ldots } & {\alpha _{2}^{\left(n\right)} } \\ {\ldots } & {\ldots } & {\ldots } & {\ldots } \\ {\alpha _{n}^{\left(1\right)} } & {\alpha _{2}^{\left(2\right)} } & {\ldots } & {\alpha _{2}^{\left(n\right)} } \end{array}\right)\cdot \left(\begin{array}{c} {C_{1} \cdot e^{k_{1} \cdot x} } \\ {C_{2} \cdot e^{k_{2} \cdot x} } \\ {\ldots } \\ {C_{n} \cdot e^{k_{n} \cdot x} } \end{array}\right)$,

где $C_{i} $ -- произвольные постоянные.

Задача

Решить систему ДУ $\left\{\begin{array}{c} {\frac{dy_{1} }{dx} =5\cdot y_{1} +4y_{2} } \\ {\frac{dy_{2} }{dx} =4\cdot y_{1} +5\cdot y_{2} } \end{array}\right. $.

Записываем матрицу системы: $A=\left(\begin{array}{cc} {5} & {4} \\ {4} & {5} \end{array}\right)$.

В матричной форме данная СОДУ записывается так: $\left(\begin{array}{c} {\frac{dy_{1} }{dt} } \\ {\frac{dy_{2} }{dt} } \end{array}\right)=\left(\begin{array}{cc} {5} & {4} \\ {4} & {5} \end{array}\right)\cdot \left(\begin{array}{c} {y_{1} } \\ {y_{2} } \end{array}\right)$.

Получаем характеристическое уравнение:

$\left|\begin{array}{cc} {5-k} & {4} \\ {4} & {5-k} \end{array}\right|=0$, то есть $k^{2} -10\cdot k+9=0$.

Корни характеристического уравнения: $k_{1} =1$, $k_{2} =9$.

Составляем систему для вычисления $\left(\begin{array}{c} {\alpha _{1}^{\left(1\right)} } \\ {\alpha _{2}^{\left(1\right)} } \end{array}\right)$ при $k_{1} =1$:

\[\left(\begin{array}{cc} {5-k_{1} } & {4} \\ {4} & {5-k_{1} } \end{array}\right)\cdot \left(\begin{array}{c} {\alpha _{1}^{\left(1\right)} } \\ {\alpha _{2}^{\left(1\right)} } \end{array}\right)=0,\]

то есть $\left(5-1\right)\cdot \alpha _{1}^{\left(1\right)} +4\cdot \alpha _{2}^{\left(1\right)} =0$, $4\cdot \alpha _{1}^{\left(1\right)} +\left(5-1\right)\cdot \alpha _{2}^{\left(1\right)} =0$.

Положив $\alpha _{1}^{\left(1\right)} =1$, получаем $\alpha _{2}^{\left(1\right)} =-1$.

Составляем систему для вычисления $\left(\begin{array}{c} {\alpha _{1}^{\left(2\right)} } \\ {\alpha _{2}^{\left(2\right)} } \end{array}\right)$ при $k_{2} =9$:

\[\left(\begin{array}{cc} {5-k_{2} } & {4} \\ {4} & {5-k_{2} } \end{array}\right)\cdot \left(\begin{array}{c} {\alpha _{1}^{\left(2\right)} } \\ {\alpha _{2}^{\left(2\right)} } \end{array}\right)=0, \]

то есть $\left(5-9\right)\cdot \alpha _{1}^{\left(2\right)} +4\cdot \alpha _{2}^{\left(2\right)} =0$, $4\cdot \alpha _{1}^{\left(2\right)} +\left(5-9\right)\cdot \alpha _{2}^{\left(2\right)} =0$.

Положив $\alpha _{1}^{\left(2\right)} =1$, получаем $\alpha _{2}^{\left(2\right)} =1$.

Получаем решение СОДУ в матричной форме:

\[\left(\begin{array}{c} {y_{1} } \\ {y_{2} } \end{array}\right)=\left(\begin{array}{cc} {1} & {1} \\ {-1} & {1} \end{array}\right)\cdot \left(\begin{array}{c} {C_{1} \cdot e^{1\cdot x} } \\ {C_{2} \cdot e^{9\cdot x} } \end{array}\right).\]

В обычной форме решение СОДУ имеет вид: $\left\{\begin{array}{c} {y_{1} =C_{1} \cdot e^{1\cdot x} +C_{2} \cdot e^{9\cdot x} } \\ {y_{2} =-C_{1} \cdot e^{1\cdot x} +C_{2} \cdot e^{9\cdot x} } \end{array}\right. $.