Законы ньютона

Механика - раздела физики, изучающего законы изменения положений тел в пространстве со временем и причины, это вызывающие, основанный на законах Ньютона. Поэтому её часто называют «Ньютоновской механикой».

Классическая механика подразделяется на:

    статику (которая рассматривает равновесие тел)

    кинематику (которая изучает геометрическое свойство движения без рассмотрения его причин)

    динамику (которая рассматривает движение тел).

Основные понятия механики:

    Пространство . Считается, что движение тел происходит в пространстве, являющимся евклидовым, абсолютным (не зависит от наблюдателя), однородным (две любые точки пространства неотличимы) и изотропным (два любых направления в пространстве неотличимы).

    Время - фундаментальное понятие, не определяемое в классической механике. Считается, что время является абсолютным, однородным и изотропным (уравнения классической механики не зависят от направления течения времени)

    Система отсчёта – состоит из тела отсчёта (некоего тела, реального или воображаемого, относительно которого рассматривается движение механической системы) и системы координат

    Материальная точка - объект, размерами которого в задаче можно пренебречь. В действительности, любое тело, которое подчиняется законам классической механики, обязательно имеет ненулевой размер. Тела ненулевого размера могут испытывать сложные движения, поскольку может меняться их внутренняя конфигурация, например, тело может вращаться или деформироваться. Тем не менее, в определённых случаях к подобным телам применимы результаты, полученные для материальных точек, если рассматривать такие тела, как совокупности большого количества взаимодействующих материальных точек.

    Масса - мера инертности тел.

    Радиус-вектор - вектор, проведённый из начала координат в точку расположения тела, характеризует положение тела в пространстве.

    Скорость является характеристикой изменения положения тела со временем, определяется как производная пути по времени.

    Ускорение - скорость изменения скорости, определяется как производная скорости по времени.

    Импульс - векторная физическая величина, равная произведению массы материальной точки на её скорость.

    Кинетическая энергия - энергия движения материальной точки, определяемая как половина произведения массы тела на квадрат его скорости.

    Сила - физическая величина, характеризующая степень взаимодействия тел между собой. Фактически, определением силы является второй закон Ньютона.

    Консервативная сила - сила, работа которой не зависит от формы траектории (зависит только от начальной и конечной точки приложения сил). Консервативные силы - такие силы, работа по любой замкнутой траектории которых равна 0. Если в системе действуют только консервативные силы, то механическая энергия системы сохраняется.

    Диссипативные силы - силы, при действии которых на механическую систему её полная механическая энергия убывает (то есть диссипирует), переходя в другие, немеханические формы энергии, например, в теплоту.

Основные законы механики

Принцип относительности Галилея - основной принципом, на котором базируется классическая механика является принцип относительности, сформулированный на основе эмпирических наблюдений Г. Галилеем. Согласно этому принципу существует бесконечно много систем отсчёта, в которых свободное тело покоится или движется с постоянной по модулю и направлению скоростью. Эти системы отсчёта называются инерциальными и движутся друг относительно друга равномерно и прямолинейно. Во всех инерциальных системах отсчёта свойства пространства и времени одинаковы, и все процессы в механических системах подчиняются одинаковым законам.

Законы Ньютона

Основой классической механики являются три закона Ньютона.

Первый закон Ньютона устанавливает наличие свойства инертности у материальных тел и постулирует наличие таких систем отсчёта, в которых движение свободного тела происходит с постоянной скоростью (такие системы отсчёта называются инерциальными).

Второй закон Ньютона вводит понятие силы как меры взаимодействия тела и на основе эмпирических фактов постулирует связь между величиной силы, ускорением тела и его инертностью (характеризуемой массой). В математической формулировке второй закон Ньютона чаще всего записывается в следующем виде:

где F -результирующий вектор сил, действующих на тело;

a - вектор ускорения тела;

m - масса тела.

Третий закон Ньютона - для каждой силы, действующей на первое тело со стороны второго, существует противодействующая сила, равная по величине и противоположная по направлению, действующей на второе тело со стороны первого.

Закон сохранения энергии

Закон сохранения энергии является следствием законов Ньютона для замкнутых систем, в которых действует только консервативные силы. Полная механическая энергия замкнутой системы тел, между которыми действуют только консервативные силы, остаётся постоянной.

Теория машин и механизмов

Основные понятия и определения.

Теория механизмов и машин занимается исследованием и разработкой высокопроизводительных механизмов и машин.

Механизм – совокупность подвижных материальных тел, одно из которых закреплено, а все остальные совершают вполне определенные движения, относительно неподвижного материального тела.

Звенья – материальные тела, из которых состоит механизм.

Стойка – неподвижное звено.

Стойка изображается. Звено, к которому изначально сообщается движение, называется входным (начальным, ведущим). Звено, совершающее движение, для выполнения которого предназначен механизм – выходное звено.

Кривошипно- ползунный механизм

Если это компрессор, то зв.1 – входное, а зв.3 – выходное.

Если это механизм ДВС, то зв.3 – входное, а зв.1 – выходное.

Кинематическая пара – подвижное соединение звеньев, допускающее их относительное движение. Все кинематические пары на схеме обозначают буквами латинского алфавита, например A, B, C и т.д.

Если, то К.П. – вращательная; если, то поступательная.

Порядок нумерации звеньев:

входное звено – 1;

стойка – последний номер.

Звенья бывают:

    простые – состоят из одной детали;

    сложные – состоят из нескольких, жестко скрепленных друг с другом и совершающих одно и тоже движение.

Например, шатунная группа механизма ДВС.

Звенья, соединяясь друг с другом, образуют кинематические цепи, которые разделяют на:

    простые и сложные;

    замкнутые и разомкнутые.

Машина – техническое устройство, в результате осуществления технологического процесса определенного рода, можно автоматизировать или механизировать труд человека.

Машины условно можно разделить на виды:

    энергетические;

    технологические;

    транспортные;

    информационные.

Энергетические машины разделяют на:

    двигатели;

    трансформирующие машины.

Двигатель – техническое устройство, преобразующее один вид энергии в другой. Например, ДВС.

Трансформаторная машина – техническое устройство, потребляющее энергию извне и совершающее полезную работу. Например, насосы, станки, прессы.

Техническое объединение двигателя и технологической (рабочей машины) – Машинный агрегат (МА).

Двигатель имеет определенную механическую характеристику, рабочая машина тоже.

 1 – скорость, с которой вращается вал двигателя;

 2 – скорость, с которой будет вращаться главный вал рабочей машины.

 1 и  2 нужно поставить в соответствие друг другу.

Например, число оборотов n 1 =7000 об/мин., а n 2 =70 об/мин.

Чтобы привести в соответствие механические характеристики двигателя и рабочей машины, между ними устанавливают передаточный механизм, который имеет свои механические характеристики.

u П =1/2=700/70=10

В качестве передаточного механизма могут быть использованы:

    фрикционные передачи (с использованием трения);

    цепные передачи (привод мотоцикла);

    зубчатые передачи.

В качестве рабочей машины наиболее часто используют рычажные механизмы.

Основные виды рычажных механизмов.

1. Кривошипно-ползунный механизм.

а) центральный (рис.1);

б) внеосный (дезоксиальный) (рис.2);

е - эксцентриситет

Рис. 2

1-кривошип, т.к. звено совершает полный оборот вокруг своей оси;

2-шатун, не связан со стойкой, совершает плоское движение;

3-ползун (поршень), совершает поступательное движение;

2. Четырехшарнирный механизм.

Звенья 1,3 могут быть кривошипами.

Если зв.1,3 – кривошипы, то механизм двукривошипный.

Если зв.1 – кривошип (совершает полный оборот), а зв.3 – коромысло (совершает неполный оборот), то механизм кривошипно-коромысловый.

Если зв.1,3 – коромысла, то механизм двукоромысловый.

3. Кулисный механизм.

1 - кривошип;

2 - камень кулисы (втулка) вместе с зв.1 совершает полный оборот вокруг А (1 и 2 одно и тоже), а также движется вдоль зв.3, приводя его во вращение;

3 - коромысло (кулиса).

4.Гидроцилиндр

(в кинематическом отношении подобен кулисному механизму).

В процессе проектирования конструктор решает две задачи:

    анализа (исследует готовый механизм);

    синтеза (проектируется новый механизм по требуемым параметрам);

Структурный анализ механизма.

Понятия о кинематических парах и их классификация.

Два звена неподвижно связанных между собой образуют кинематическую пару. Все кинематические пары подвергаются двум независимым классификациям:

Примеры классификации пар:

Рассмотрим кинематическую пару «винт-гайка». Число степеней подвижности этой пары равно 1, а число налагаемых связейравно 5. Это пара будет являться парой пятого класса, свободным можно выбрать только один вид движения для винта или гайки, а второе движение будет сопутствующим.

Кинематическая цепь – звенья, связанные между собой кинематическими парами различных классов.

Кинематические цепи бывают пространственными и плоскими.

Пространственные кинематические цепи – цепи, звенья которых двигаются в различных плоскостях.

Плоские кинематические цепи – цепи, звенья которых двигаются в одной или параллельных плоскостях.


В В Е Д Е Н И Е

Физика - наука о природе, изучающая наиболее общие свойства материального мира, наиболее общие формы движения материи, лежащие в основе всех явлений природы. Физика устанавли-вает законы, которым подчиняются эти явления.

Физика изучает также свойства и строение материальных тел, указывает пути практического использования физических законов в технике.

В соответствии с многообразием форм материи и ее движения физика подразделяется на ряд разделов: механика, термоди-намика, электродинамика, физика колебаний и волн, оптика, фи-зика атома, ядра и элементарных частиц.

На стыке физики и других естественных наук возникли новые науки: астрофизика, биофизика, геофизика, физическая хи-мия и др.

Физика является теоретической основой техники. Развитие физики послужило фундаментом для создания таких новых отраслей техники, как космическая техника, ядерная техника, квантовая электроника и др. В свою очередь, развитие технических наук способствует созданию совершенно новых методов физичес-ких исследований, обуславливающих прогресс физики и смежных наук.

ФИЗИЧЕСКИЕ ОСНОВЫ КЛАССИЧЕСКОЙ МЕХАНИКИ

I . Механика. Общие понятия

Механика - раздел физики, который рассматривает простей-шую форму движения материи - механическое движение.

Под механическим движением понимают изменение положения изучаемого тела в пространстве со временем относительно неко-торого гола или системы тел, условно считаемых неподвижными. Такую систему тел вместе с часами, в качестве которых может быть выбран любой периодический процесс, называют системой отсчета (С.О.). С.О. часто выбирают из соображений удобства.

Для математического описания движения с С.О. связывают систе-му координат, часто прямоугольную.

Простейшее тело в механике - материальная точка. Это те-ло, размерами которого в условиях денной задачи можно пренебречь.

Всякое тело, размерами которого пренебречь нельзя, рас-сматривают как систему материальных точек.

Механика подразделяется на кинематику , которая занимается геометрическим описанием движения, не изучая его причин, динамику, которая изучает законы движения тел под действием сил, и статику, которая изучает условия равновесия тел.

2. Кинематика точки

Кинематика изучает пространственно-временное перемещение тел. Она оперирует такими понятиями, как перемещение , путь, время t , скорость движения , ускорение.

Линию, которую описывает при своем движении материальная точка, называют траекторией. По форме траектории движения де-лятся на прямолинейные и криволинейные. Вектор , соеди-няющий начальную I и конечную 2 точки, называют перемещением (рис. I.I).

Каждому моменту времени t соответствует свой радиус-вектор
:

Таким образом движение точки мо-жет быть описано векторной функ-цией.

которая определяем векторный способ задания движения, или тре-мя скалярными функциями

x = x (t ); y = y (t ); z = z (t ) , (1.2)

которые называют кинематическими уравнениями. Они определяют задание движения координатным способом.

Движение точки будет также определено, если для каждого момента времени будет установлено положение точки на траекто-рии, т.е. зависимость

Она определяет задание движения естественным способом.

Каждая из указанных формул представляет собой закон дви-жения точки.

3. Скорость

Если моменту времени t 1 соответствует радиус-вектор , а
, то за промежуток
тело получит перемещение
. В этом случае средней скоростью
за t назы-вают величину

, (1.4)

которая по отношению к траектории представляет секущую, про-ходящую через точки I и 2. Скоростью в момент времени t назы-вают вектор

, (1.5)

Из этого определения следует, что скорость в каждой точке траектории направлена по касательной к ней. Из (1.5) следует, что проекции и модуль вектора скорости определятся выражениями:

Если задан закон движения (1.3), то модуль вектора скорости определится так:

, (1.7)

Таким образом, зная закон движения (I.I), (1.2), (1.3), можно вычислить вектор и модуль доктора скорости и, наоборот, зная скорость из формул (1.6), (1.7), можно вычислять коор-динаты и путь.

4. Ускорение

При произвольном движении вектор скорости непрерывно ме-няется. Величина, характеризующая быстроту изменения вектора скорости, называется ускорением.

Если в. момент времениt 1 скорость точки ,а приt 2 - , то приращение скорости составит (Рис.1.2). Среднее ускорение п
ри этом

а мгновенное

, (1.9)

Для проекции и модуля ускорений имеем: , (1.10)

Если задан естественный способ движения, то ускорение можно определить и так. Скорость меняется по величине и по направлению, приращение скорости раскладывают на две величины;
- направленный вдоль (приращение скорости по величине) и
- направленный перпендикулярно (приращение. скорости по направлению), т.е. = + (Рис.I.З). Из (1.9) получаем:

(1.11);
(1.12)

Тангенциальное (касательное) ускорение характеризует быстроту изменения по величине (1.13)

нормальное (центростремительное ускорение) характеризует быстроту изменения по направлению. Для вычисления a n рассмотрим

OMN и MPQ при условии малого перемещения точки по траек-тории. Из подобия этих треугольников находим PQ:MP=MN:OM:

Полное ускорение в этом случае определится так:

, (1.15)

5. Примеры

I. Равнопеременное прямолинейное движение. Это движение с постоянным ускорением(
) . Из (1.8) находим

или
, где v 0 - скорость в момент времениt 0 . Полагая t 0 =0, находим
,
а пройденный путь S из формулы (I.7):

гдеS 0 - постоянная, определяемая из начальных условий.

2. Равномерное движение по окружности. В этом случае скорость меняется только по направлению, то есть
- центростремительное ускорение.

I. Основные понятия

Перемещение тел в пространстве - результат их механического взаимодействия между собой, в результате которого проис-ходит изменение движения тел или их деформация. В качестве мары механического взаимодействия в динамике вводится величина – сила . Для данного тела сила - внешний фактор, а характер движения зависит и от свойства самого тела - податливости оказываемому на него внешнему воздействию или степени инерции те-ла. Мерой инерции тела является его масса т , зависящая от количества вещества тела.

Таким образом, основными понятиями механики являются: дви-жущаяся материя, пространство и время как формы существования движущейся материи, масса как мера инерции тел, сила как мера механического взаимодействия между телами.Соотношения между этими понятиями определяются законам! движения, которые были сформулированы Ньютоном как обобщение и уточнение опытных фактов.

2. Законы механики

1-й закон. Всякое тело сохраняет состояние покоя или равно-мерного прямолинейного движения, пока внешние воздействиянеизменяют этого состояния. Первый закон заключает в себе закон инерции, а также определение силы как причины, нарушающей инерциальное состояние тела. Чтобы выразить его математически, Ньютон ввел понятие количества движения или импульса тела:

(2.1)

тогда , если

2-й закон. Изменение количества движения пропорционально при-ложенной силе и происходит по направлению действия этой силы. Выбрав единицы измерения m и так, чтобы коэффициент пропорциональности был равен единице, получаем

или
(2.2)

Если при движении m = const , то

или
(2.3)

В этом случае 2-й закон формулируют так: сила равна произведению массы тела на его ускорение. Этот закон является основным законом динамики и позволяет по заданным силам я начальным условиям находить закон движения тел. 3-й закон. Силы, с которыми два тела действуют друг на друга, равны и направлены в противоположные стороны, т.е.
, (2.4)

Законы Ньютона приобретают конкретный смысл после того, как указаны конкретные силы, действующие на тело. Например, часто в механике движение тел вызывается действием таких сил: сила тяготения
, где r - расстояние между телами, - гравитационная постоянная; сила тя-жести - сила тяготения вблизи поверхности Земли, P = mg ; сила трения
,где k основе классической механики лежат законы Ньютона. Кинематика изучает...

  • Основы квантовой механики и ее значение для химии

    Реферат >> Химия

    Именно с электромагнитными взаимодействиями связано и существование, и физические свойства атомно-молекулярных систем, - слабое... - тех первоначальных разделов классической теории (механики и термодинамики), на основе которых делались попытки интерпретации...

  • Применение концепций классической механики и термодинамики

    Контрольная работа >> Физика

    Фундаментальной физической теорией, которая имеет высокий статус и в современной физике, является классическая механика , основы ... . Законы классической механики и методы математического анализа демонстрировали свою эффективность. Физический эксперимент, ...

  • Основные идеи квантовой механики

    Реферат >> Физика

    Лежит в основе квантово-механического описания микросистем, подобно уравнениям Гамильтона в классической механике . В... идея квантовой механики сводится к следующему: всем физическим величинам классической механики в квантовой механике соответствуют «свои» ...

  • Определение 1

    Механика - обширный раздел физики, исследующий законы изменения положений физических тел в пространстве и времени, а также постулаты, основанные на законах Ньютона.

    Рисунок 1. Основной закон динамики. Автор24 - интернет-биржа студенческих работ

    Зачастую данное научное направление физики называют «Ньютоновской механикой». Классическая механика на сегодняшний день подразделяется на такие разделы:

    • статику - рассматривает и описывает равновесие тел;
    • кинематику - изучает геометрические особенности движения без рассмотрения его причин;
    • динамику – занимается исследованием движения материальных веществ.

    Механическое движение представляет собой одну из простейших и вместе с тем наиболее распространенную форму существования живой материи. Поэтому классическая механика занимает исключительно значимое место в естествознании и считается главным подразделом физики.

    Основные законы классической механики

    Классическая механика в своих постулатах изучает движение рабочих тел, со скоростями, которые намного меньше скорости света. Согласно специальной гипотезе относительности, для движущихся на огромной скорости элементов не существует абсолютного пространства и времени. В результате характер взаимодействия веществ становится сложнее, в частности, их масса начинает зависеть от скорости движения. Все это стало объектом рассмотрения формул релятивистской механики, для которых константа световой скорости играет фундаментальную роль.

    Классическая механика базируется на следующих основных законах.

    1. Принцип относительности Галилея. Согласно данному принципу существует множество систем отсчёта, в которых любое свободное тело находится в состоянии покоя или движется с постоянной по направлению скоростью. Эти концепции в науке называются инерциальными, и осуществляю движение относительно друга прямолинейно и равномерно.
    2. Три закона Ньютона. Первый устанавливает обязательное наличие свойства инертности у физических тел и постулирует наличие таких концепций отсчёта, в которых движение свободного вещества происходит с постоянной скоростью. Второй постулат вводит понятие силы как главной меры взаимодействия активных элементов и на основе теоретических фактов постулирует взаимосвязь между ускорением тела, его величиной и инертностью. Третий ньютоновский закон - для каждой действующей на первое тело силы существует противодействующий фактор, равный по величине и противоположный по направлению.
    3. Закон сохранения внутренней энергии является следствием законов Ньютона для стабильных, замкнутых систем, в которых действуют исключительно консервативные силы. Полная механическая сила замкнутой системы материальных тел, между которыми действуют только тепловая энергия, остается постоянной.

    Правила параллелограмма в механике

    Из трех фундаментальных теорий движения тела Ньютона вытекают определенные следствия, одно из которых - сложение общего количества элементов по правилу параллелограмма. Согласно данной идее, ускорение любого физического вещества зависит от величин, в основном характеризующих действие иных тел, определяющих особенности самого процесса. Механическое действие на исследуемый объект со стороны внешней среды, которая кардинально изменяет скорость движения сразу нескольких элементов, называют силой. Она может иметь многогранную природу.

    В классической механике, которая имеет дело со скоростями, значительно меньшими скорости света, масса считается одной из основных характеристик самого тела, не зависящей от того, движется оно или находится в состоянии покоя. Масса физического тела находится вне зависимости от взаимодействия вещества с другими частями системы.

    Замечание 1

    Таким образом, масса стала постепенно пониматься как количество живой материи.

    Установление понятий массы и силы, а также метода их измерения позволило Ньютону описать и сформулировать второй закон классической механики . Итак, масса есть одна из ключевых характеристик материи, определяющая ее гравитационные и инертные свойства.

    Первое и второе начало механики относятся соответственно к систематическому движению одного тела или материальной точки. При этом учитывается только действие других элементов в определенной концепции. Однако любое физическое действие есть взаимодействие.

    Третий закон механики уже фиксирует данное утверждение и гласит: действию всегда соответствует противоположно направленное и равное противодействие. В формулировке Ньютона этот постулат механики справедлив лишь для случая непосредственной взаимосвязи сил или при внезапной передаче действия одного материального тела на другое. В случае перемещения за длительный промежуток времени третий закон применяется тогда, когда временем передачи действия возможно пренебречь.

    Вообще все законы классической механики справедливы для функционирования инерциальных систем отсчета. В случае неинерциальных концепций ситуация совершенно иная. При ускоренном движении координат относительно самой инерциальной системы первый закон Ньютона невозможно использовать - свободные тела в ней будут менять свою скорость движения с течением времени и зависеть от скорости движения и энергии других веществ.

    Границы применимости законов классической механики

    Рисунок 3. Границы применимости законов классической механики. Автор24 - интернет-биржа студенческих работ

    В результате достаточно стремительного развития физики в начале XX столетия сформировалась определенная сфера применения классической механики: ее законы и постулаты выполняются для движений физических тел, скорость которых значительно меньше скорости света. Было определено, что с ростом скорости масса любого вещества будет автоматически возрастать.

    Несоответствие принципов в классической механике в основном исходило из того, что будущее в известном смысле полностью находится в настоящем – этим и определяется вероятность точного предвидения поведения системы в любой отрезок времени.

    Замечание 2

    Ньютоновский способ сразу стал главным инструментом познания сущности природы и всего живого на планете. Законы механики и методы математического анализа вскоре показали свою эффективность и значимость. Физический эксперимент, который базировался на измерительной технике, обеспечивал ученым небывалую ранее точность.

    Физическое знание все в более значительной степени становилось центральной промышленной технологией, что стимулировало общее развитие других важных естественных наук.

    В физике все изолированные ранее электричество, свет, магнетизм и теплота стали целыми и объединенными в электромагнитную гипотезу. И хотя сама природа тяготения оставалась так и неопределенной, ее действия возможно было рассчитать. Утвердилась и реализовалась концепция механистического детерминизма Лапласа, которая исходит из возможности точно определить поведение тел в любой момент времени, если изначально определены исходные условия.

    Структура механики как науки казалась достаточно надежной и прочной, а также практически завершенной. В итоге сложилось впечатление, что знание физики и ее законов близко к своему финалу – столь мощную силу показал фундамент классической физики.

    Механика – это часть физики, которая изучает закономерности механического движения и причины, вызывающие или изменяющие это движение.

    Механика, в свою очередь, делится на кинематику, динамику и статику.

    Механическое движение – это изменение взаимного расположения тел или частей тела с течением времени.

    Масса – это скалярная физическая величина, количественно характеризующая инертные и гравитационные свойства материи.

    Инертность – это стремление тела сохранять состояние покоя или равномерного прямолинейного движения.

    Инертная масса характеризует способность тела сопротивляться изменению своего состояния (покоя или движения), например, во втором законе Ньютона

    .

    Гравитационная масса характеризует способность тела создавать гравитационное поле, которое характеризуется векторной величиной , называемой напряженностью. Напряженность гравитационного поля точечной массы равна:

    ,

    Гравитационная масса характеризует способность тела взаимодействовать с гравитационным полем:

    .

    п ринцип эквивалентности гравитационной и инертной масс: каждая масса является одновременно и инертной и гравитационной.

    Масса тела зависит от плотности вещества ρ и размеров тела (объема тела V):

    .

    Понятие массы не тождественно понятиям веса и силы тяжести. Она не зависит от полей тяготения и ускорений.

    Момент инерции – тензорная физическая величина, количественно характеризующая инертность твёрдого тела, проявляющуюся во вращательном движении.

    п ри описании вращательного движения задать массу недостаточно. Инертность тела во вращательном движении зависит не только от массы, но и от ее распределения относительно оси вращения.

    1. Момент инерции материальной точки

    ,

    где m – масса материальной точки; r – расстояние от точки до оси вращения.

    2. Момент инерции системы материальных точек

    .

    3. Момент инерции абсолютно твердого тела

    .

    Сила – это векторная физическая величина, являющаяся мерой механического воздействия на тело со стороны других тел или полей, в результате которого тело приобретает ускорение или деформируется (изменяет свою форму или размеры).

    Механика использует различные модели для описания механического движения.

    Материальная точка (м.т.)– это тело, обладающее массой, размерами которого в данной задаче можно пренебречь.

    Абсолютно твердое тело (а.т.т.) – это тело, которое в процессе движения не деформируется, то есть расстояние между любыми двумя точками в процессе движения остается неизменным.
    § 2. Законы движения.


    • Первый закон н ьютона : всякая материальная точка (тело) сохраняет состояние покоя или равномерного прямолинейного движения до тех пор, воздействие со стороны других тел не заставит ее изменить это состояние.
    Те системы отсчета, по отношению к которым выполняется первый закон Ньютона, называются инерциальными системами отсчета (ИСО). Следовательно, первый закон Ньютона утверждает существование ИСО.

    • Второй закон Ньютона (основной закон динамики поступательного движения): скорость изменения импульса материальной точки (тела) равна сумме действующих на нее сил


    • Третий закон Ньютона : всякое действие материальных точек (тел) друг на друга носит характер взаимодействия; силы, с которыми материальные точки действуют друг на друга, всегда равны по модулю, противоположно направлены и действуют вдоль прямой, соединяющей эти точки

    ,

    здесь – сила, действующая на первую материальную точку со стороны второй; – сила, действующая на вторую материальную точку со стороны первой. Эти силы приложены к разным материальным точкам (телам), всегда действуют парами и являются силами одной природы.





    ,

    здесь – гравитационная постоянная.
    .

    Законы сохранения в классической механике.

    з аконы сохранения выполняются в замкнутых системах взаимодействующих тел.

    Система называется замкнутой, если на систему не действуют внешние силы.

    Импульс – векторная физическая величина, количественно характеризующая запас поступательного движения:

    .

    Закон сохранения импульса системы материальных точек (м.т.): в замкнутых системах м.т. полный импульс сохраняется

    ,
    ,

    где – скорость i-й материальной точки до взаимодействия; – ее скорость после взаимодействия.

    Момент импульса – физическая векторная величина, количественно характеризующая запас вращательного движения.

    ,

    – импульс материальной точки, – радиус-вектор материальной точки.
    Закон сохранения момента импульса : в замкнутой системе суммарный момент импульса сохраняется:

    .

    Физическая величина, характеризующая способность тела или системы тел совершать работу, называется энергией.

    Энергия – скалярная физическая величина, являющаяся наиболее общей характеристикой состояния системы.

    Состояние системы определяется ее движением и конфигурацией, т. е. взаимным расположением ее частей. Движение системы характеризуется кинетической энергией K, а конфигурация (нахождение тела в потенциальном поле сил) – потенциальной энергией U.

    Полная энергия определяется как сумма:

    E = K + U + E внутр,

    где E внутр – внутренняя энергия тела.

    Кинетическая и потенциальная энергии в сумме составляют механическую энергию .

    Формула Эйнштейна (взаимосвязь энергии и массы):

    В системе отсчета, связанной с центром масс системы м.т., m = m 0 – масса покоя, а Е = Е 0 = m 0 . c 2 – энергия покоя.

    Внутренняя энергия определяется в системе отсчета, связанной с самим телом, то есть внутренняя энергия является одновременно и энергией покоя.

    Кинетическая энергия – это энергия механического движения тела или системы тел. Релятивистская кинетическая энергия определяется по формуле

    При малых скоростях v

    .

    Потенциальная энергия – скалярная физическая величина, характеризующая взаимодействие тел с другими телами или с полями.

    Примеры:


      потенциальная энергия упругого взаимодействия

    ;

    • потенциальная энергия гравитационного взаимодействия точечных масс

    ;

    Закон сохранения энергии : полная энергия замкнутой системы материальных точек сохраняется

    .

    При отсутствии диссипации (рассеяния) энергии сохраняются и полная и механическая энергии. В диссипативных системах полная энергия сохраняется, а механическая энергия не сохраняется.


    § 2. Основные понятия классической электродинамики.

    Источником электромагнитного поля является электрический заряд.

    Электрический заряд – это свойство некоторых элементарных частиц вступать в электромагнитное взаимодействие.

    Свойства электрического заряда :

    1. Электрический заряд может быть положительным и отрицательным (принято считать, что протон заряжен положительно, а электрон – отрицательно).

    2. Электрический заряд квантован. Квант электрического заряда – элементарный электрический заряд (е = 1,610 –19 Кл). В свободном состоянии все заряды кратны целому числу элементарных электрических зарядов:

    3. Закон сохранения заряда: суммарный электрический заряд замкнутой системы сохраняется во всех процессах, происходящих с участием заряженных частиц:

    q 1 + q 2 +...+ q N = q 1 * + q 2 * +...+ q N * .

    4. р елятивистская инвариантность: величина полного заряда системы не зависит от движения носителей заряда (заряд движущейся и покоящейся частиц одинаков). Иными словами – во всех ИСО величина заряда любой частицы или тела одинакова.

    Описание электромагнитного поля.

    Заряды взаимодействуют друг с другом (рис.1). Величина силы, с которой заряды одного знака отталкиваются друг от друга, а заряды разного знака притягиваются друг к другу, определяется с помощью эмпирически установленного закона Кулона:

    .

    Здесь
    ,
    – электрическая постоянная.





    Рис.1

    А каков механизм взаимодействия заряженных тел? Можно выдвинуть такую гипотезу: тела, обладающие электрическим зарядом, порождают электромагнитное поле. В свою очередь, электромагнитное поле воздействует на другие заряженные тела, находящиеся в этом поле. Возник новый материальный объект – электромагнитное поле.

    Опыт показывает, что в любом электромагнитном поле на неподвижный заряд действует сила, величина которой зависит только от величины заряда (величина силы пропорциональна величине заряда
    ) и его положения в поле. Можно каждой точке поля поставить в соответствие некоторый вектор , который является коэффициентом пропорциональности между силой, действующей на неподвижный заряд в поле, и зарядом . Тогда силу, с которой поле действует на неподвижный заряд можно определить по формуле:

    .

    Сила, действующая со стороны электромагнитного поля на неподвижный заряд, называется электрической силой . Векторная величина , характеризующая то состояние поля, которое обуславливает действие , называется электрической напряженностью электромагнитного поля.

    Дальнейшие эксперименты с зарядами показывают, что вектор не характеризует электромагнитное поле полностью. Если заряд начать двигать, то появляется некоторая дополнительная сила, величина и направление которой никак не связаны с величиной и направлением вектора . Добавочную силу, возникающую при движении заряда в электромагнитном поле, называют магнитной силой . Опыт показывает, что магнитная сила зависит от заряда и от величины и направления вектора скорости. Если двигать пробный заряд через какую-либо фиксированную точку поля с одной и той же по величине скоростью, но в разных направлениях, то магнитная сила каждый раз будет разной. Однако всегда
    . Дальнейший анализ экспериментальных фактов позволил установить, что для каждой точки электромагнитного поля существует единственное направление MN (рис.2), обладающее следующими свойствами:



    Рис.2

    Если вдоль направления MN направить некоторый вектор , имеющий смысл коэффициента пропорциональности между магнитной силой и произведением
    , то задание , и однозначно характеризует то состояние поля, которое обусловливает появление . Вектор назвали вектором электромагнитной индукции. Так как и
    , то

    .

    В электромагнитном поле на движущийся со скоростью заряд q действует электромагнитная сила Лоренца (рис.3):


    .
    Векторы и , то есть шестерка чисел
    , являются равноправными компонентами единого электромагнитного поля (компоненты тензора электромагнитного поля). В частном случае может оказаться, что все
    или все
    ; тогда электромагнитное поле сводится либо к электрическому, либо к магнитному полям.

    Эксперимент подтвердил правильность построенной двухвекторной модели электромагнитного поля. В этой модели каждой точке электромагнитного поля задается пара векторов и . Построенная нами модель – модель непрерывного поля, так как функции
    и
    , описывающие поле, являются непрерывными функциями координат.

    Теория электромагнитных явлений, использующая модель непрерывного поля, называется классической.

    В действительности поле, как и вещество, дискретно. Но это начинает сказываться лишь на расстояниях, сравнимых с размерами элементарных частиц. Дискретность электромагнитного поля учитывается в квантовой теории.

    Принцип суперпозиции.

    Поля принято изображать с помощью силовых линий.

    Силовая линия – это линия, касательная к которой в каждой точке совпадает с вектором напряженности поля.

    Д
    ля точечных неподвижных зарядов картина силовых линий электростатического поля показана на рис. 6.

    Вектор напряженности электростатического поля, создаваемого точечным зарядом определяется по формуле (рис.7 а и б)иловая линия магнитного поля строится так, чтобы в каждой точке силовой линии вектор был направлен по касательной к этой линии. Силовые линии магнитного поля замкнуты (рис.8). Это говорит о том, что магнитное поле – вихревое поле.


    Рис. 8

    А если поле создает не один, а несколько точечных зарядов? Влияют ли заряды друг на друга или каждый из зарядов системы вносит свой вклад в результирующее поле независимо от остальных? Будет ли электромагнитное поле, создаваемое i-м зарядом в отсутствии остальных зарядов таким же, как и поле создаваемое i-м зарядом в присутствии остальных зарядов?

    Принцип суперпозиции : электромагнитное поле произвольной системы зарядов есть результат сложения полей, которые создавались бы каждым из элементарных зарядов этой системы в отсутствии остальных:

    и
    .
    Законы электромагнитного поля

    Законы электромагнитного поля сформулированы в виде системы уравнений Максвелла.

    Первое

    .

    Из первого уравнения Максвелла следует, что электростатическое поле – потенциальное (сходящееся или расходящееся) и его источником являются неподвижные электрические заряды.

    Второе уравнение Максвелла для магнитостатического поля:

    .

    Из второго уравнения Максвелла следует, что магнитостатическое поле – вихревое не потенциальное и не имеет точечных источников.

    Третье уравнение Максвелла для электростатического поля:

    .

    Из третьего уравнения Максвелла следует, что электростатическое поле не вихревое.

    В электродинамике (для переменного электромагнитного поля) третье уравнение Максвелла:

    ,

    т. е. электрическое поле не потенциальное (не кулоновское), а вихревое и создается переменным потоком вектора индукции магнитного поля.

    Четвертое уравнение Максвелла для магнитостатического поля

    ,

    Из четвертого уравнения Максвелла в магнитостатике следует, что магнитное поле – вихревое и создается постоянными электрическими токами или движущимися зарядами. Направление закрученности силовых линий магнитного поля определяется по правилу правого винта (рис.9).

    Р
    ис.9

    В электродинамике четвертое уравнение Максвелла:

    .

    Первое слагаемое в этом уравнении есть ток проводимости I, связанный с движением зарядов и создающий магнитное поле.

    Второе слагаемое в этом уравнении есть "ток смещения в вакууме", т. е. переменный поток вектора напряженности электрического поля.

    Основные положения и выводы теории Максвелла следующие.

    Изменение во времени электрического поля ведет к появлению магнитного поля и наоборот. Следовательно, существуют электромагнитные волны.

    Передача электромагнитной энергии происходит с конечной скоростью. Скорость передачи электромагнитных колебаний равна скорости света
    . Из этого следовала принципиальная тождественность электромагнитных и оптических явлений.

    Механика - учение о равновесии и движении тел (или их частей) в пространстве и времени. Механическое движение представляет собой простейшую и вместе с тем (для человека) наиболее распространенную форму существования материи. Поэтому механика занимает исключительно важное место в естествознании и является основным подразделом физики. Она исторически возникла и сформировалась как наука раньше других подразделов естествознания.

    Механика включает в себя статику, кинематику и динамику. В статике изучаются условия равновесия тел, в кинематике - движения тел с геометрической точки зрения, т.е. без учета действия сил, а в динамике - с учетом этих сил. Статику и кинематику часто рассматривают как введение в динамику, хотя и они имеют самостоятельное значение.

    До сих пор под механикой мы подразумевали классическую механику, строительство которой было завершено к началу XX века. В рамках современной физики существуют еще две механики - квантовая и релятивистская. Но более подробно мы рассмотрим классическую механику.

    Классическая механика рассматривает движение тел со скоростями много меньше скорости света. Согласно специальной теории относительности, для тел, перемещающихся с большими скоростями, близкими к скорости света, не существует абсолютного времени и абсолютного пространства. Отсюда характер взаимодействия тел становится сложнее, в частности, масса тела, оказывается, зависит от скорости его движения. Все это явилось предметом рассмотрения релятивистской механики, для которой константа скорости света играет фундаментальную роль.

    Классическая механика базируется на следующих основных законах.

    Принцип относительности Галилея

    Согласно этому принципу существует бесконечно много систем отсчёта, в которых свободное тело покоится или движется с постоянной по модулю и направлению скоростью. Эти системы отсчёта называются инерциальными и движутся друг относительно друга равномерно и прямолинейно. Этот принцип можно также сформулировать как отсутствие абсолютных систем отсчёта, то есть систем отсчёта, каким-либо образом выделенных относительно других.

    Основой классической механики являются три закона Ньютона.

    • 1. Всякое материальное тело сохраняет состояние покоя или равномерного прямолинейного движения до тех пор, пока воздействие со стороны других тел не заставит его изменить это состояние. Стремление тела сохранить состояние покоя или равномерного прямолинейного движения называется инертностью. Поэтому первый закон называют также законом инерции.
    • 2. Ускорение, приобретаемое телом, прямо пропорционально силе, действующей на тело, и обратно пропорционально массе тела.
    • 3. Силы, с которыми действуют друг на друга взаимодействующие тела, равны по величине и противоположны по направлению.

    Второй закон Ньютона нам известен в виде

    естествознание классический механика закон

    F = m Ч a, или a = F/m,

    где ускорение а, получаемое телом под действием силы F, обратно пропорционально массе тела m.

    Первый закон можно получить из второго, так как в случае отсутствия воздействия на тело со стороны других сил ускорение также равно нулю. Однако первый закон рассматривается как самостоятельный закон, поскольку он утверждает существование инерциальных систем отсчета. В математической формулировке второй закон Ньютона чаще всего записывается в следующем виде:

    где -- результирующий вектор сил, действующих на тело; -- вектор ускорения тела; m -- масса тела.

    Третий закон Ньютона уточняет некоторые свойства введёного во втором законе понятия силы. Им постулируется наличие для каждой силы, действующей на первое тело со стороны второго, равной по величине и противоположной по направлению силы, действующей на второе тело со стороны первого. Наличие третьего закона Ньютона обеспечивает выполнение закона сохранения импульса для системы тел.

    Закон сохранения импульса

    Данный закон является следствием законов Ньютона для замкнутых систем, то есть систем, на которые не действуют внешние силы или действия внешних сил скомпенсированы и результирующая сила равна нулю. С более фундаментальной точки зрения существует взаимосвязь закона сохранения импульса и однородности пространства , выражаемая теоремой Нётер.

    Закон сохранения энергии

    Закон сохранения энергии является следствием законов Ньютона для замкнутых консервативных систем, то есть систем, в которых действует только консервативные силы. Энергия, отданная одним телом другому, всегда равна энергии, полученной другим телом. Для количественной оценки процесса обмена энергией между взаимодействующими телами в механике вводится понятие работы силы, вызывающей движение. Сила, вызывающая движение тела, совершает работу, а энергия движущегося тела возрастает на величину затраченной работы. Как известно, тело массой m, движущееся со скоростью v, обладает кинетической энергией

    Потенциальная энергия - это механическая энергия системы тел, которые взаимодействуют посредством силовых полей, например посредством гравитационных сил. Работа, совершаемая этими силами, при перемещении тела из одного положения в другое не зависит от траектории движения, а зависит только от начального и конечного положения тела в силовом поле. Гравитационные силы являются консервативными силами, а потенциальная энергия тела массой m, поднятого на высоту h над поверхностью Земли, равна

    Е пот = mgh,

    где g - ускорение свободного падения.

    Полная механическая энергия равна сумме кинетической и потенциальной энергии.