Что такое обратимая химическая реакция. Обратимые и необратимые химические реакции. Химическое равновесие

Одной из важнейших характеристик химической реакции является глубина (степень) превращения, показывающая, насколько исходные вещества превращаются в продукты реакции. Чем она больше, тем экономичнее можно проводить процесс. Глубина превращения, помимо других факторов, зависит от обратимости реакции.

Обратимые реакции, в отличие от необратимых , протекают не до конца: ни одно из реагирующих веществ не расходуется полностью. Одновременно идет взаимодействие продуктов реакции с образованием исходных веществ.

Рассмотрим примеры:

1) в замкнутый сосуд при определенной температуре введены равные объемы газообразного йода и водорода. Если столкновения молекул этих веществ происходят с нужной ориентацией и достаточной энергией, то химические связи могут перестроиться с образованием промежуточного соединения (активированный комплекс, см. п.1.3.1). Дальнейшая перестройка связей может привести к распаду промежуточного соединения на две молекулы йодистого водорода. Уравнение реакции:

H 2 + I 2 ® 2HI

Но молекулы йодистого водорода также будут беспорядочно сталкиваться с молекулами водорода, йода и между собой. При столкновении молекул HI ничто не помешает образоваться промежуточному соединению, которое затем может разложиться на йод и водород. Этот процесс выражается уравнением:

2HI ® H 2 + I 2

Таким образом, в этой системе одновременно будут протекать две реакции - образование йодистого водорода и его разложение. Их можно выразить одним общим уравнением

H 2 + I 2 « 2HI

Обратимость процесса показывает знак «.

Реакция, направленная в данном случае в сторону образования йодистого водорода, называется прямой, а противоположная - обратной.

2) если смешать два моль диоксида серы с одним моль кислорода, создать в системе условия, благоприятствующие протеканию реакции, и по истечении времени провести анализ газовой смеси, то результаты покажут, что в системе будут присутствовать как SO 3 – продукт реакции, так и исходные вещества – SO 2 и O 2 . Если в те же условия в качестве исходного вещества поместить оксид серы (+6), то можно будет обнаружить, что часть его разложится на кислород и оксид серы (+4), причем конечное соотношение между количествами всех трех веществ будет такое же, как и в том случае, когда исходили из смеси диоксида серы и кислорода.

Таким образом, взаимодействие диоксида серы с кислородом также является одним из примеров обратимой химической реакции и выражается уравнением

2SO 2 + O 2 « 2SO 3

3) взаимодействие железа с соляной кислотой протекает согласно уравнению:

Fe + 2HCL ® FeCL 2 + H 2

При достаточном количестве соляной кислоты реакция закончится, когда

все железо израсходуется. Кроме того, если попытаться провести эту реакцию в обратном направлении – пропускать водород через раствор хлорида железа, то металлического железа и соляной кислоты не получится – эта реакция не может идти в обратном направлении. Таким образом, взаимодействие железа с соляной кислотой – необратимая реакция.

Однако, следует иметь ввиду, что теоретически любой необратимый процесс можно представить протекающим в определенных условиях обратимо, т.е. в принципе все реакции можно считать обратимыми. Но очень часто одна из реакций явно преобладает. Это бывает в тех случаях, когда продукты взаимодействия удаляются из сферы реакции: выпадает осадок, выделяется газ, при ионообменных реакциях образуются практически недиссоциирующие продукты; или же когда за счет явного избытка исходных веществ противоположный процесс практически подавляется. Таким образом, естественное или искусственное исключение возможности протекания обратной реакции позволяет довести процесс практически до конца.

Примерами таких реакций могут служить взаимодействие хлорида натрия с нитратом серебра в растворе

NaCL + AgNO 3 ® AgCl¯ + NaNO 3 ,

бромида меди с аммиаком

CuBr 2 + 4NH 3 ® Br 2 ,

нейтрализация хлороводородной кислоты раствором едкого натра

HCl + NaOH ® NaCl + H 2 O.

Это все примеры лишь практически необратимых процессов, так как и хлорид серебра несколько растворим, и комплексный катион 2+ не абсолютно устойчив, и вода диссоциирует, хотя и в крайне незначительной степени.

Все химические реакции можно разбить на две группы: необратимые и обратимые реакции. Необратимые реакции протекают до конца - до полного израсходования одного из реагирующих веществ. Обратимые реакции протекают не до конца: при обратимой реакции ни одно из реагирующих веществ не расходуется полностью. Это различие связано с тем, что необратимая реакция может протекать только в одном направлении. Обратимая же реакция может протекать как в прямом, так и в обратном направлениях.

Рассмотрим два примера.

Пример 1. Взаимодействие между цинком и концентрированной азотной кислотой протекает согласно уравнению:

При достаточном количестве азотной кислоты реакция закончатся только тогда, когда весь цинк растворится. Кроме того, если попытаться провести эту реакцию в обратном направлении - пропускать диоксид азота через раствор нитрата цинка, то металлического цинка и азотной кислоты не получится - данная реакция не может протекать в обратном направлении. Таким образом, взаимодействие цинка с азотной кислотой - необратимая реакция.

Пример 2. Синтез аммиака протекает согласно уравнению:

Если смешать один моль азота с тремя молями водорода, осуществить в системе условия, благоприятствующие протеканию реакции, и по истечении достаточного времени произвести анализ газовой смеси, то результаты анализа покажут, что в системе будет присутствовать не только продукт реакции (аммиак), но и исходные вещества (азот и водород). Если теперь в те же условия в качестве исходного вещества поместить не азото-водородную смесь, а аммиак, то можно будет обнаружить, что часть аммиака разложится на азот и водород, причем конечное соотношение между количествами всех трех веществ будет такое же, как в том случае, когда исходили из смеси азота с водородом. Таким образом, синтез аммиака - обратимая реакция.

В уравнениях обратимых реакций вместо знака равенства можно ставить стрелки; они символизируют протекание реакции как в прямом, так и обратном направлениях.

На рис. 68 показано изменение скоростей прямой и обратной реакций с течением времени. Вначале, при смешении исходных веществ, скорость прямой реакции велика, а скорость обратной ракцни равна нулю, По мере протекания реакции исходные вещества расходуются и их концентрации падают.

Рис. 63. Изменение скорости прямой и обратной реакции с течением времени .

В результате этого уменьшается скорость прямой реакции. Одновременно появляются продукты реакции, и их концентрация возрастает. Вследствие этого начинает идти обратная реакция, причем ее скорость постепенно увеличивается. Когда скорости прямой и обратной реакций становятся одинаковыми, наступает химическое равновесие. Так, в последнем примере устанавливается равновесие между азотом, водородом и аммиаком.

Химическое равновесие называют динамическим равновесием. Этим подчеркивается, что при равновесии протекают и прямая, и обратная реакции, но их скорости одинаковы, вследствие чего изменений в системе не заметно.

Количественной характеристикой химического равновесия служит величина, называемая константой химического равновесия. Рассмотрим ее на примере реакции синтеза иодо-водорода:

Согласно закону действия масс, скорости прямой и обратной реакций выражаются уравнениями:

При равновесии скорости прямой и обратной реакций равны друг другу, откуда

Отношение констант скорости прямой и обратной реакций тоже представляет собой константу. Она называется константой равновесия данной реакции (К):

Отсюда окончательно

В левой части этого уравнения стоят те концентрации взаимодействующих веществ, которые устанавливаются при равновесии- равновесные концентрации. Правая же часть уравнения представляет собой постоянную (при постоянной температуре) величину.

Можно показать, что в общем случае обратимой реакции

константа равновесия выразится уравнением:

Здесь большие буквы обозначают формулы веществ, а маленькие - коэффициенты в уравнении реакции.

Таким образом, при постоянной температуре константа равновесия обратимой реакции представляет собой постоянную величину, показывающую то соотношение между концентрациями продуктов реакции (числитель) и исходных веществ (знаменатель), которое устанавливается при равновесии.

Уравнение константы равновесия показывает, что в условиях равновесия концентрации всех веществ, участвующих в реакции, связаны между собою. Изменение концентрации любого из этих веществ влечет за собою изменения концентраций всех остальных веществ; в итоге устанавливаются новые концентрации, но соотношение между ними вновь отвечает константе равновесия.

Численное значение константы равновесия в первом приближении характеризует выход данной реакции. Например, при выход реакции велик, потому что при этом

т. е. при равновесии концентрации продуктов реакции много больше концентраций исходных веществ, а это и означает, что выход реакции велик. При (по аналогичной причине) выход реакции мал.

В случае гетерогенных реакций в выражение константы равновесия, так же как и в выражение закона действия масс (см. § 58), входят концентрации только тех веществ, которые находятся в газовой или жидкой фазе. Например, для реакции

константа равновесия имеет вид:

Величина константы равновесия зависит от природы реагирующих веществ и от температуры. От присутствия катализаторов она не зависит. Как уже сказано, константа равновесия равна отношению констант скорости прямой и обратной реакции. Поскольку катализатор изменяет энергию активации и прямой, и обратной реакций на одну и ту же величину (см. § 60), то на отношение констант их скорости он не оказывает влияния.

Поэтому катализатор не влияет на величину константы равновесия и, следовательно, не может ни увеличить, ни снизить выход реакции. Он может лишь ускорить или замедлить наступление равновесия.

Темы кодификатора : обратимые и необратимые реакции. Химическое равновесие. Смещение химического равновесия под действием различных факторов.

По возможности протекания обратной реакции химические реакции делят на обратимые и необратимые.

Обратимые химические реакции — это реакции, продукты которых при данных условиях могут взаимодействовать друг с другом.

Необратимые реакции — это реакции, продукты которых при данных условиях взаимодействовать друг с другом не могут.

Более подробно про классификацию химических реакций можно прочитать .

Вероятность взаимодействия продуктов зависит от условий проведения процесса.

Так, если система открытая , т.е. обменивается с окружающей средой и веществом, и энергией, то химические реакции, в которых, например, образуются газы, будут необратимыми. Например , при прокаливании твердого гидрокарбоната натрия:

2NaHCO 3 → Na 2 CO 3 + CO 2 + H 2 O

будет выделяться газообразный углекислый газ и улетучиваться из зоны проведения реакции. Следовательно, такая реакция будет необратимой при данных условиях. Если же рассмотреть замкнутую систему , которая не может обмениваться веществом с окружающей средой (например, закрытый ящик, в котором происходит реакция), то углекислый газ не сможет улететь из зоны проведения реакции, и будет взаимодействовать с водой и карбонатом натрия, то реакция будет обратимой при данных условиях:

2NaHCO 3 ⇔ Na 2 CO 3 + CO 2 + H 2 O

Рассмотрим обратимые реакции . Пусть обратимая реакция протекает по схеме:

aA + bB = cC + dD

Скорость прямой реакции по закону действующих масс определяется выражением: v 1 =k 1 ·C A a ·C B b , скорость обратной реакции: v 2 =k 2 ·C С с ·C D d . Если в начальный момент реакции в системе нет веществ C и D, то сталкиваются и взаимодействуют преимущественно частицы A и B, и идет преимущественно прямая реакция. Постепенно концентрация частиц C и D также начнет повышаться, следовательно, скорость обратной реакции будет расти. В какой-то момент скорость прямой реакции станет равна скорости обратной реакции . Это состояние и называют химическим равновесием .

Таким образом, химическое равновесие — это такое состояние системы, при котором скорости прямой и обратной реакции равны .

Т.к. скорости прямо и обратной реакции равны, скорость образования веществ равна скорости их расходования, и текущие концентрации веществ не изменяются . Такие концентрации называют равновесными .

Обратите внимание, при равновесии идет и прямая, и обратная реакции , то есть реагенты взаимодействуют друг с другом, но и продукты взаимодействуют с такой же скоростью. При этом внешние факторы могут воздействовать и смещать химическое равновесие в ту или иную сторону. Поэтому химическое равновесие называют подвижным, или динамическим.

Исследования в области подвижного равновесия начались еще в XIX веке. В трудах Анри Ле-Шателье были заложены основы теории, которые позже обобщил ученый Карл Браун. Принцип подвижного равновесия, или принцип Ле-Шателье-Брауна, гласит:

Если на систему, находящуюся в состоянии равновесия, воздействовать внешним фактором, который изменяет какое-либо из условий равновесия, то в системе усиливаются процессы, направленные на компенсацию внешнего воздействия.

Иными словами: при внешнем воздействии на систему равновесие сместится так, чтобы компенсировать это внешнее воздействие.

Этот принцип, что очень важно, работает для любых равновесных явлений (не только химических реакций). Однако мы сейчас рассмотрим его применительно к химическим взаимодействиям. В случае химических реакций внешнее воздействие приводит к изменению равновесных концентраций веществ.

На химические реакции в состоянии равновесия могут воздействовать три основных фактора — температура, давление и концентрации реагентов или продуктов.

1. Как известно, химические реакции сопровождаются тепловым эффектом. Если прямая реакция идет с выделением теплоты (экзотермическая, или +Q), то обратная — с поглощением теплоты (эндотермическая, или -Q), и наоборот. Если повышать температуру в системе, равновесие сместится так, чтобы это повышение компенсировать. Логично, что при экзотермической реакции повышение температуры компенсировать не получится. Таким образом, при повышении температуры равновесие в системе смещается в сторону поглощения теплоты, т.е. в сторону эндотермических реакций (-Q); при понижении температуры — в сторону экзотермической реакции (+Q).

2. В случае равновесных реакций, когда хотя бы одно из веществ находится в газовой фазе, на равновесие также существенно влияет изменение давления в системе. При повышении давления химическая система пытается компенсировать это воздействие, и увеличивает скорость реакции, в которой количество газообразных веществ уменьшается. При понижении давления система увеличивает скорость реакции, в которой образуется больше молекул газообразных веществ. Таким образом: при увеличении давления равновесие смещается в сторону уменьшения числа молекул газов, при уменьшении давления — в сторону увеличения числа молекул газов .

Обратите внимание! На системы, где число молекул газов-реагентов и продуктов одинаково, давление не оказывает воздействие! Также изменение давления практически не влияет на равновесие в растворах, т.е. на реакции, где газов нет.

3. Также на равновесие в химических системах влияет изменение концентрации реагирующих веществ и продуктов. При повышении концентрации реагентов система пытается их израсходовать, и увеличивает скорость прямой реакции. При понижении концентрации реагентов система пытается их наработать, и увеличивается скорость обратной реакции. При повышении концентрации продуктов система пытается их также израсходовать, и увеличивает скорость обратной реакции. При понижении концентрации продуктов химическая система пувеличивает скорость их образования, т.е. скорость прямой реакции.

Если в химической системе увеличивается скорость прямой реакции вправо , в сторону образования продуктов и расходования реагентов . Если увеличивается скорость обратной реакции , мы говорим, что равновесие сместилось влево , в сторону расходования продуктов и увеличения концентрации реагентов .

Например , в реакции синтеза аммиака:

N 2 + 3H 2 = 2NH 3 + Q

повышение давления приводит к увеличению скорости реакции, в которой образуется меньшее число молекул газов, т.е. прямой реакции (число молекул газов-реагентов равно 4, число молекул газов в продуктах равно 2). При повышении давления равновесие смещается вправо, в сторону продуктов. При повышении температуры равновесие сместится в сторну эндотермической реакции , т.е. влево, в сторону реагентов. Увеличение концентрации азота или водорода сместит равновесие в сторону их расходования, т.е. вправо, в сторону продуктов.

Катализатор не влияет на равновесие, т.к. ускоряет и прямую, и обратную реакции.

Что такое обратимая реакция? Это химический процесс, который протекает в двух взаимно обратных направлениях. Рассмотрим основные характеристики подобных превращений, а также их отличительные параметры.

В чем суть равновесия

Обратимые химические реакции не приводят к получению определенных продуктов. Например, при окислении оксида серы (4) одновременно с получением оксида серы (6) снова образуются исходные компоненты.

Необратимые процессы предполагают полное превращение взаимодействующих веществ, сопровождается подобная реакция получением одного или нескольких продуктов реакции.

Примерами взаимодействий необратимого характера являются реакции разложения. Например, при нагревании перманганата калия образуется манганат металла, оксид марганца (4), а также выделяется газообразный кислород.

Обратимая реакция не предполагает образования осадков, выделения газов. Именно в этом и состоит ее основное отличие от необратимого взаимодействия.

Химическое равновесие является таким состоянием взаимодействующей системы, при котором возможно обратимое протекание одной или нескольких химических реакций при условии равенства скоростей процессов.

Если система находится в динамическом равновесии, не происходит изменения температуры, концентрации реагентов, иных параметров в заданный промежуток времени.

Условия смещения равновесия

Равновесие обратимой реакции можно объяснить с помощью правила Ле-Шателье. Его суть заключается в том, что при оказании на систему, изначально находящуюся в динамическом равновесии, внешнего воздействия, наблюдается изменение реакции в сторону, противоположную воздействию. Любая обратимая реакция с помощью данного принципа может быть смещена в нужном направлении в случае изменения температуры, давления, а также концентрации взаимодействующих веществ.

Принцип Ле-Шателье «работает» только для газообразных реагентов, твердые и жидкие вещества не учитываются. Между давлением и объемом существует взаимно обратная зависимость, определенная уравнением Менделеева - Клапейрона. Если объем исходных газообразных компонентов будет больше продуктов реакции, то для изменения равновесия вправо важно повысить давление смеси.

Например, при трансформации оксида углерода (2) в углекислый газ в реакцию вступает 2 моль угарного газа и 1 моль кислорода. При этом образуется 2 моля оксида углерода (4).

Если по условию задачи эта обратимая реакция должна быть смещена вправо, необходимо увеличить давление.

Существенное влияние на протекание процесса оказывает и концентрация реагирующих веществ. Согласно принципу Ле-Шателье, в случае увеличения концентрации исходных компонентов равновесие процесса смещается в сторону продукта их взаимодействия.

При этом понижение (вывод из реакционной смеси) образующегося продукта, способствует протеканию прямого процесса.

Кроме давления, концентрации существенное влияние на протекание обратной либо прямой реакции оказывает и изменение температуры. При нагревании исходной смеси наблюдается смещение равновесия в сторону эндотермического процесса.

Примеры обратимых реакций

Рассмотрим на конкретном процессе способы смещения равновесия в сторону образования продуктов реакции.

2СО+О 2 -2СО 2

Данная реакция является гомогенным процессом, так как все вещества находятся в одном (газообразном) состоянии.

В левой части уравнения есть 3 объема компонентов, после взаимодействия этот показатель снизился, образуется 2 объема. Для протекания прямого процесса необходимо увеличить давление реакционной смеси.

Учитывая, что реакция является экзотермической, для получения углекислого газа температуру понижают.

Равновесие процесса будет смещаться в сторону образования продукта реакции при увеличении концентрации одного из исходных веществ: кислорода или угарного газа.

Заключение

Обратимые и необратимые реакции играют важную роль в жизнедеятельности человека. Обменные процессы, происходящие в нашем организме, связаны с систематическим смещением химического равновесия. В химическом производстве используют оптимальные условия, позволяющие направлять реакцию в нужное русло.

Обратимые реакции - химические реакции, в данных условиях протекающие одновременно в двух противоположных направлениях (прямом и обратном), исходные вещ-ва превращ в продукты не полностью. например: 3H 2 + N 2 ⇆ 2NH 3

Направление обратимых реакций зависит от концентраций веществ - участников реакции. По завершении обратимой реакции, т. е. при достижении химического равновесия , система содержит как исходные вещества, так и продукты реакции.

Простая (одностадийная) обратимая реакция состоит из двух происходящих одновременно элементарных реакций, которые отличаются одна от другой лишь направлением химического превращения. Направление доступной непосредственному наблюдению итоговой реакции определяется тем, какая из этих взаимно-обратных реакций имеет большую скорость. Например, простая реакция

N 2 O 4 ⇆ 2NO 2

складывается из элементарных реакций

N 2 O 4 ⇆ 2NO 2 и 2NO 2 ⇆ N 2 O 4

Для обратимости сложной (многостадийной) реакции, необходимо, чтобы были обратимы все составляющие её стадии.

Для обратимых реакций уравнение принято записывать следующим образом А + В АВ.

Две противоположно направленные стрелки указывают на то, что при одних и тех же условиях одновременно протекает как прямая, так и обратная реакция

Необратимыми называют такие химические процессы, продукты которых не способны реагировать друг с другом с образованием исходных веществ. С точки зр. Термодинамики – исходные вещ-вы полностью превр в родукты. Примерами необратимых реакций может служить разложение бертолетовой соли при нагревании 2КСlО3 > 2КСl + ЗО2,

Необратимыми называются такие реакции, при протекании которых:

1) образующиеся продукты уходят из сферы реакции - выпадают в виде осадка, выделяются в виде газа, например ВаСl 2 + Н 2 SО 4 = ВаSО 4 ↓ + 2НСl Na 2 CO 3 + 2HCl = 2NaCl + CO 2 ↓ + H 2 O

2) образуется малодиссоциированное соединение, напри­мер вода: НСl + NаОН = Н 2 О + NаСl

3) реакция сопровождается большим выделением энергии, например горение магния

Mg + 1 / 2 О 2 = МgО, ∆H = -602,5 кДж / моль

Хи­ми­че­ское рав­но­ве­сие – это со­сто­я­ние ре­ак­ци­он­ной си­сте­мы, в ко­то­ром ско­ро­сти пря­мой и об­рат­ной ре­ак­ции равны.

Рав­но­вес­ная кон­цен­тра­ция ве­ществ – это кон­цен­тра­ции ве­ществ в ре­ак­ци­он­ной смеси, на­хо­дя­щих­ся в со­сто­я­нии хи­ми­че­ско­го рав­но­ве­сия. Рав­но­вес­ная кон­цен­тра­ция обо­зна­ча­ет­ся хи­ми­че­ской фор­му­лой ве­ще­ства, за­клю­чен­ной в квад­рат­ные скоб­ки.

На­при­мер, сле­ду­ю­щая за­пись обо­зна­ча­ет, что рав­но­вес­ная кон­цен­тра­ция во­до­ро­да в рав­но­вес­ной си­сте­ме со­став­ля­ет 1 моль/л.

Хи­ми­че­ское рав­но­ве­сие от­ли­ча­ет­ся от при­выч­но­го для нас по­ня­тия «рав­но­ве­сие». Хи­ми­че­ское рав­но­ве­сие – ди­на­ми­че­ское. В си­сте­ме, на­хо­дя­щей­ся в со­сто­я­нии хи­ми­че­ско­го рав­но­ве­сия, про­ис­хо­дят и пря­мая, и об­рат­ная ре­ак­ции, но их ско­ро­сти равны, и по­это­му кон­цен­тра­ции участ­ву­ю­щих ве­ществ не ме­ня­ют­ся. Хи­ми­че­ское рав­но­ве­сие ха­рак­те­ри­зу­ет­ся кон­стан­той рав­но­ве­сия, рав­ной от­но­ше­нию кон­стант ско­ро­стей пря­мой и об­рат­ной ре­ак­ций.

Кон­стан­ты ско­ро­сти пря­мой и об­рат­ной ре­ак­ции – это ско­ро­сти дан­ной ре­ак­ции при кон­цен­тра­ци­ях ис­ход­ных для каж­дой из них ве­ществ в рав­ных еди­ни­цах. Также кон­стан­та рав­но­ве­сия равна от­но­ше­нию рав­но­вес­ных кон­цен­тра­ций про­дук­тов пря­мой ре­ак­ции в сте­пе­нях сте­хио­мет­ри­че­ских ко­эф­фи­ци­ен­тов к про­из­ве­де­нию рав­но­вес­ных кон­цен­тра­ций ре­а­ген­тов.

Н2+I2 = 2НI

Если , то в си­сте­ме боль­ше ис­ход­ных ве­ществ. Если , то в си­сте­ме боль­ше про­дук­тов ре­ак­ции. Если кон­стан­та рав­но­ве­сия зна­чи­тель­но боль­ше 1, такую ре­ак­цию на­зы­ва­ют необ­ра­ти­мой.

Положение химического равновесия зависит от следующих параметров реакции: температуры, давления и концентрации веществ. Влияние, которое оказывают эти факторы на химическую реакцию, подчиняются закономерности, которая была в общем виде высказана в 1884 г. французским физико-химиком Ле-Шателье, подтверждена в том же году голландским физико-химиком Вант-Гоффом. Современная формулировка принципа Ле-Шателье такова: если система находится в со стоянии равновесия, то любое воздействие, которое выражается в изменении одного из факторов, определяющих равновесие, вызывает в ней изменение, стремящееся ослабить это воздействие.

В принципе Ле-Шателье речь идет о смещении состояния динамического химического равновесия, этот принцип называется также принципом подвижного равновесия, или принципом смещения равновесия.

Рассмотрим использование этого принципа для различных случаев:

Влияние температуры. При изменении темпер сдвиг хим-о равновесия определяется знаком теплового эффекта хим-й реакции. В случае эндотермич реакции, т. е. реакции, идущей с поглощением тепла, повышение температуры способствует ее протеканию, поскольку в ходе реакции температура понижается. В результате равновесие смещается вправо, концентрации продуктов увеличиваются, их выход растет. Если температура понижается, то наблюдается обратная картина: равновесие смещается влево (в сторону обратной реакции, протекающей с выделением тепла), концентрация и выход продуктов уменьшаются.

Для экзотермической реакции, наоборот, повышение температуры приводит к смещению равновесия влево, а понижение температуры - к смещению равновесия вправо.

Изменения концентр продуктов и реагентов связаны с тем, что при изменении темпер изменяется константа равновесия реакции. Увеличение константы равновес приводит к повыш выхода продуктов, уменьшение - к понижению.

Так, например, повышение температуры в случае эндотермического процесса разложения карбоната кальция CaCO 3 (т) Û CaO(т)+ CO 2 (г) − Q вызывает смещение равновесия вправо, а в случае экзотермической реакции распада монооксида азота на простые вещества
2NO Û N 2 + O 2 +Q повышение температуры смещает равновесие влево, т. е. способствует образованию NO.

Влияние давления. Давление оказывает заметное влияние на состояние химического равновесия только в тех случаях, когда хотя бы один из участников хим-й реакции - газ. Повыш давления в таких сис-х сопровождается уменьш объема и увелич концентрации всех газообразных участников реакции.

Если в ходе прямой реакции количество газообразных веществ увеличивается, то повышение давления приводит к смещению равновесия влево (количество газов уменьшается при обратной реакции). Если в ходе реакции количество газообразных веществ уменьшается, при повышении давления равновесие смещается вправо. Если количества газообразных реагентов и продуктов равны между собой, изменение давления не приводит к смещению химического равновесия.

Следует отметить, что изменение давления не оказывает влияния на константу равновесия.

Влияние концентрации. Согласно принципу Ле-Шателье, повышение концентрации одного из участников реакции должно привести к его расходованию. Таким образом, если в систему при V = const добавлять реагент, равновесие сместится вправо, а если продукт реакции - влево. Удаление того или иного вещества из системы (уменьшение его концентрации) дает обратный эффект.

Все сказанное выше относится и к жидким, и к газообразным растворам (смесям газов)