Как пользоваться ядерным реактором. Все слышали но ни кто не знает. Как работает ядерный (атомный) реактор

Сегодня мы совершим небольшое путешествие в мир ядерной физики. Темой нашей экскурсии будет ядерный реактор. Вы узнаете, как он устроен, какие физические принципы лежат в основе его работы и где применяют это устройство.

Зарождение атомной энергетики

Первый в мире ядерный реактор был создан в 1942 году в США экспериментальной группой физиков под руководством лауреата нобелевской премии Энрико Ферми. Тогда же ими была осуществлена самоподдерживающаяся реакция расщепления урана. Атомный джин был выпущен на свободу.

Первый советский ядерный реактор был запущен в 1946 году, а спустя 8 лет дала ток первая в мире АЭС в городе Обнинске. Главным научным руководителем работ в атомной энергетике СССР был выдающийся физик Игорь Васильевич Курчатов.

С тех сменилось несколько поколений ядерных реакторов, но основные элементы его конструкции сохранились неизменными.

Анатомия атомного реактора

Эта ядерная установка представляет собой толстостенный стальной бак с цилиндрической ёмкостью от нескольких кубических сантиметров до многих кубометров.

Внутри этого цилиндра размещается святая святых - активная зона реактора. Именно здесь происходит цепная реакция деления ядерного топлива.

Рассмотрим, как происходит этот процесс.

Ядра тяжелых элементов, в частности Уран-235 (U-235), под действием небольшого энергетического толчка способны разваливаться на 2 осколка приблизительно равной массы. Возбудителем этого процесса является нейтрон.

Осколки чаще всего представляют собой ядра бария и криптона. Каждый из них несет положительный заряд, поэтому силы кулоновского отталкивания вынуждают их разлетаться в разные стороны со скоростью около 1/30 световой скорости. Эти осколки являются носителями колоссальной кинетической энергии.

Для практического использования энергии, необходимо, чтобы её выделение носило самоподдерживающийся характер. Цепная реакция, о которой идёт речь, тем интересна, что каждый акт деления сопровождается испусканием новых нейтронов. На один начальный нейтрон в среднем возникает 2-3 новых нейтрона. Количество делящихся ядер урана лавинообразно нарастает, вызывая выделение огромной энергии. Если этот процесс не контролировать - произойдет ядерный взрыв. Он имеет место в .

Чтобы регулировать число нейтронов в систему вводятся материалы, которые поглощают нейтроны, обеспечивая плавное выделение энергии. В качестве поглотителей нейтронов используют кадмий или бор.

Как же обуздать и использовать громадную кинетическую энергию осколков? Для этих целей служит теплоноситель, т.е. специальная среда, двигаясь в которой осколки тормозятся и нагревают её до чрезвычайно высоких температур. Такой средой может являться обычная или тяжелая вода, жидкие металлы (натрий), а также некоторый газы. Чтобы не вызвать переход теплоносителя в парообразное состояние, в активной зоне поддерживается высокое давление (до 160 атм). По этой причине стенки реактора изготавливают из десятисантиметровой стали специальных сортов.

Если нейтроны вылетят за пределы ядерного топлива, то цепная реакция может прерваться. Поэтому существует критическая масса делящегося вещества, т.е. его минимальная масса, при которой, будет поддерживаться цепная реакция. Она зависит от различных параметров, в том числе и от наличия отражателя, окружающего активную зону реактора. Он служит для предотвращения утечки нейтронов в окружающую среду. Наиболее распространенным материалом для этого конструктивного элемента является графит.

Процессы, происходящие в реакторе, сопровождаются выделением самого опасного вида радиации – гамма излучения. Чтобы минимизировать эту опасность, в нём предусмотрена противорадиационная защита.

Как работает атомный реактор

В активной зоне реактора размещают ядерное горючее, именуемое ТВЭЛами. Они представляют собой таблетки, сформированные из расщепляемого материала и уложенные в тонкие трубки длиной около 3,5 м и диаметром в 10 мм.

Сотни однотипных топливных сборок размещают в активную зону, они и становятся источниками тепловой энергии, выделяемой в процессе цепной реакции. Теплоноситель, омывающий ТВЭЛы, образует первый контур реактора.

Нагретый до высоких параметров, он перекачивается насосом в парогенератор, где передает свою энергию воде второго контура, превращая её в пар. Полученный пар вращает турбогенератор. Вырабатываемая этим агрегатом электроэнергия передается потребителю. А отработанный пар, охлажденный водой из пруда–охладителя, в виде конденсата, возвращается в парогенератор. Цикл замыкается.

Такая двухконтурная схема работа ядерной установки исключает проникновение радиации, сопровождающей процессы, происходящие в активной зоне, за его пределы.

Итак, в реакторе происходит цепочка превращений энергии: ядерная энергия расщепляемого материала → в кинетическую энергию осколков → тепловую энергию теплоносителя → кинетическую энергию турбины → и в электрическую энергию в генераторе.

Неизбежные потери энергии приводят к тому, что КПД атомных электростанций сравнительно не велик 33-34%.

Кроме выработки электрической энергии на АЭС ядерные реакторы используют для получения различных радиоактивных изотопов, для исследований во многих областях промышленности, для изучения допустимых параметров промышленных реакторов. Всё более широкое распространение получают транспортные реакторы, обеспечивающие энергией двигатели транспортных средств.

Типы ядерных реакторов

Как правило, ядерные реакторы работают на уране U-235. Однако его содержание в природном материале чрезвычайно мало, всего 0,7%. Основную же массу природного урана составляет изотоп U-238. Цепную реакцию в U-235 могут вызвать лишь медленные нейтроны, а изотоп U-238 расщепляется только быстрыми нейтронами. В результате же расщепления ядра рождаются как медленные, так и быстрые нейтроны. Быстрые нейтроны, испытывая торможение в теплоносителе (воде), становятся медленным. Но количество изотопа U-235 в природном уране столь мало, что приходится прибегать к его обогащению, доводя его концентрацию до 3-5%. Процесс этот весьма дорогой и экономически невыгоден. Кроме того время исчерпания природных ресурсов этого изотопа оценивается лишь 100-120 годами.

Поэтому в атомной промышленности происходит постепенный переход на реакторы, работающие на быстрых нейтронах.

Основное их отличие - в качестве теплоносителя используют жидкие металлы, которые не замедляют нейтроны, а в роли ядерного горючего используют U-238. Ядра этого изотопа через цепочку ядерных превращений переходят в Плутоний-239, который подвержен цепной реакции так же как и U-235. Т.е имеет место воспроизведение ядерного горючего, причём в количестве, превышающем его расход.

По оценке специалистов запасов изотопа Урана-238 должно хватить на 3000 лет. Этого времени вполне достаточно, чтобы у человечества хватило времени для разработки иных технологий.

Проблемы использования ядерной энергетики

Наряду с очевидными преимуществами ядерной энергетики, нельзя недооценивать масштаб проблем, связанных с эксплуатацией ядерных объектов.

Первая из них - это утилизация радиоактивных отходов и демонтированного оборудования атомной энергетики. Эти элементы обладают активным радиационным фоном, который сохраняется на протяжении длительного периода. Для утилизации этих отходов используют специальные свинцовые контейнеры. Их предполагается хоронить в районах вечной мерзлоты на глубине до 600 метров. Поэтому постоянно ведутся работы по поиску способа переработки радиоактивных отходов, что должно решить проблему утилизации и способствовать сохранению экологии нашей планеты.

Второй не менее тяжелой проблемой является обеспечение безопасности в процессе эксплуатации АЭС. Крупные аварии, подобные Чернобыльской, способны унести множество человеческих жизней и вывести из использования огромные территории.

Авария на японской АЭС «Фукусима-1» лишь подтвердила потенциальную опасность, которая проявляется при возникновении внештатной ситуации на ядерных объектах.

Однако возможности ядерной энергетики столь велики, что экологические проблемы уходят на второй план.

На сегодняшний день у человечества нет иного пути утоления всё нарастающего энергетического голода. Основой ядерной энергетики будущего, вероятно, станут «быстрые» реакторы с функцией воспроизводства ядерного топлива.

Если это сообщение тебе пригодилось, буда рада видеть тебя

Устройство и принцип действия основаны на инициализации и контроле самоподдерживающейся ядерной реакции. Его используют в качестве исследовательского инструмента, для производства радиоактивных изотопов и в качестве источника энергии для атомных электростанций.

принцип работы (кратко)

Здесь используется процесс при котором тяжелое ядро ​​распадается на два более мелких фрагмента. Эти осколки находятся в очень возбужденном состоянии и испускают нейтроны, другие субатомные частицы и фотоны. Нейтроны могут вызвать новые деления, в результате которых их излучается еще больше, и так далее. Такой непрерывный самоподдерживающийся ряд расщеплений называется цепной реакцией. При этом выделяется большое количество энергии, производство которой является целью использования АЭС.

Принцип работы ядерного реактора и таков, что коло 85% энергии расщепления высвобождается в течение очень короткого промежутка времени после начала реакции. Остальная часть вырабатывается в результате радиоактивного распада продуктов деления, после того как они излучили нейтроны. Радиоактивный распад является процессом, при котором атом достигает более стабильного состояния. Он продолжается и после завершения деления.

В атомной бомбе цепная реакция увеличивает свою интенсивность, пока не будет расщеплена большая часть материала. Это происходит очень быстро, производя чрезвычайно мощные взрывы, характерные для таких бомб. Устройство и принцип действия ядерного реактора основаны на поддержании цепной реакции на регулируемом, почти постоянном уровне. Он сконструирован таким образом, что взорваться, как атомная бомба, не может.

Цепная реакция и критичность

Физика ядерного реактора деления состоит в том, что цепная реакция определяется вероятностью расщепления ядра после испускания нейтронов. Если популяция последних уменьшается, то скорость деления в конце концов упадет до нуля. В этом случае реактор будет находиться в докритическом состоянии. Если же популяция нейтронов поддерживается на постоянном уровне, то скорость деления будет оставаться стабильной. Реактор будет находиться в критическом состоянии. И, наконец, если популяция нейтронов со временем растет, скорость деления и мощность будет увеличиваться. Состояние активной зоны станет сверхкритическим.

Принцип действия ядерного реактора следующий. Перед его запуском популяция нейтронов близка к нулю. Затем операторы удаляют управляющие стержни из активной зоны, увеличивая деление ядер, что временно переводит реактор в сверхкритическое состояние. После выхода на номинальную мощность операторы частично возвращают управляющие стержни, регулируя количество нейтронов. В дальнейшем реактор поддерживается в критическом состоянии. Когда его необходимо остановить, операторы вставляют стержни полностью. Это подавляет деление и переводит активную зону в докритическое состояние.

Типы реакторов

Большинство существующих в мире ядерных установок являются энергетическими, генерирующими тепло, необходимое для вращения турбин, которые приводят в движение генераторы электрической энергии. Также есть много исследовательских реакторов, а некоторые страны имеют подводные лодки или надводные корабли, движимые энергией атома.

Энергетические установки

Существует несколько видов реакторов этого типа, но широкое применение нашла конструкция на легкой воде. В свою очередь, в ней может использоваться вода под давлением или кипящая вода. В первом случае жидкость под высоким давлением нагревается теплом активной зоны и поступает в парогенератор. Там тепло от первичного контура передается на вторичный, также содержащий воду. Генерируемый в конечном счете пар служит рабочей жидкостью в цикле паровой турбины.

Реактор кипящего типа работает по принципу прямого энергетического цикла. Вода, проходя через активную зону, доводится до кипения на среднем уровне давления. Насыщенный пар проходит через серию сепараторов и сушилок, расположенных в корпусе реактора, что приводит его в сверхперегретое состояние. Перегретый водяной пар затем используется в качестве рабочей жидкости, вращающей турбину.

Высокотемпературные с газовым охлаждением

Высокотемпературный газоохлаждаемый реактор (ВТГР) - это ядерный реактор, принцип работы которого основан на применении в качестве топлива смеси графита и топливных микросфер. Существуют две конкурирующие конструкции:

  • немецкая «засыпная» система, которая использует сферические топливные элементы диаметром 60 мм, представляющие собой смесь графита и топлива в графитовой оболочке;
  • американский вариант в виде графитовых гексагональных призм, которые сцепляются, создавая активную зону.

В обоих случаях охлаждающая жидкость состоит из гелия под давлением около 100 атмосфер. В немецкой системе гелий проходит через промежутки в слое сферических топливных элементов, а в американской - через отверстия в графитовых призмах, расположенных вдоль оси центральной зоны реактора. Оба варианта могут работать при очень высоких температурах, так как графит имеет чрезвычайно высокую температуру сублимации, а гелий полностью инертен химически. Горячий гелий может быть применен непосредственно в качестве рабочей жидкости в газовой турбине при высокой температуре или его тепло можно использовать для генерации пара водяного цикла.

Жидкометаллический и принцип работы

Реакторам на быстрых нейтронах с натриевым теплоносителем уделялось большое внимание в 1960-1970-х годах. Тогда казалось, что их возможности по воспроизводству в ближайшее время необходимы для производства топлива для быстро развивающейся атомной промышленности. Когда в 1980-е годы стало ясно, что это ожидание нереалистично, энтузиазм угас. Однако в США, России, Франции, Великобритании, Японии и Германии построен ряд реакторов этого типа. Большинство из них работает на диоксиде урана или его смеси с диоксидом плутония. В Соединенных Штатах, однако, наибольший успех был достигнут с металлическими топливом.

CANDU

Канада сосредоточила свои усилия на реакторах, в которых используется природный уран. Это избавляет от необходимости для его обогащения прибегать к услугам других стран. Результатом такой политики стал дейтерий-урановый реактор (CANDU). Контроль и охлаждение в нем производится тяжелой водой. Устройство и принцип работы ядерного реактора состоит в использовании резервуара с холодной D 2 O при атмосферном давлении. Активная зона пронизана трубами из циркониевого сплава с топливом из природного урана, через которые циркулирует охлаждающая его тяжелая вода. Электроэнергия производится за счет передачи теплоты деления в тяжелой воде охлаждающей жидкости, которая циркулирует через парогенератор. Пар во вторичном контуре затем проходит через обычный турбинный цикл.

Исследовательские установки

Для проведения научных исследований чаще всего используется ядерный реактор, принцип работы которого состоит в применении водяного охлаждения и пластинчатых урановых топливных элементов в виде сборок. Способен функционировать в широком диапазоне уровней мощности, от нескольких киловатт до сотен мегаватт. Поскольку производство электроэнергии не является основной задачей исследовательских реакторов, они характеризуются вырабатываемой тепловой энергией, плотностью и номинальной энергией нейтронов активной зоны. Именно эти параметры помогают количественно оценить способность исследовательского реактора проводить конкретные изыскания. Маломощные системы, как правило, функционируют в университетах и ​​используются для обучения, а высокая мощность необходима в научно-исследовательских лабораториях для тестирования материалов и характеристик, а также для общих исследований.

Наиболее распространен исследовательский ядерный реактор, строение и принцип работы которого следующие. Его активная зона расположена в нижней части большого глубокого бассейна с водой. Это упрощает наблюдение и размещение каналов, по которым могут быть направлены пучки нейтронов. При низких уровнях мощности нет необходимости прокачивать охлаждающую жидкость, так как для поддержания безопасного рабочего состояния естественная конвекция теплоносителя обеспечивает достаточный отвод тепла. Теплообменник, как правило, находится на поверхности или в верхней части бассейна, где скапливается горячая вода.

Корабельные установки

Первоначальным и основным применением ядерных реакторов является их использование в подводных лодках. Главным их преимуществом является то, что, в отличие от систем сжигания ископаемого топлива, для выработки электроэнергии им не требуется воздух. Следовательно, атомная субмарина может оставаться в погруженном состоянии в течение длительного времени, а обычная дизель-электрическая подлодка должна периодически подниматься на поверхность, чтобы запускать свои двигатели в воздухе. дает стратегическое преимущество кораблям ВМС. Благодаря ей отпадает необходимость заправляться в иностранных портах или от легко уязвимых танкеров.

Принцип работы ядерного реактора на подводной лодке засекречен. Однако известно, что в США в нем используется высокообогащенный уран, а замедление и охлаждение производится легкой водой. Конструкция первого реактора атомной субмарины USS Nautilus находилась под сильным влиянием мощных исследовательских установок. Его уникальными особенностями является очень большой запас реактивности, обеспечивающей длительный период работы без дозаправки и возможность перезапуска после остановки. Электростанция в подлодках должна быть очень тихой, чтобы избежать обнаружения. Для удовлетворения конкретных потребностей различных классов субмарин были созданы разные модели силовых установок.

На авианосцах ВМС США используется ядерный реактор, принцип работы которого, как полагают, заимствован у крупнейших подлодок. Подробные сведения их конструкции также не были опубликованы.

Кроме США, атомные подводные лодки имеются у Великобритании, Франции, России, Китая и Индии. В каждом случае конструкция не разглашалась, но считается, что все они весьма схожи - это является следствием одинаковых требований к их техническим характеристикам. Россия также обладает небольшим флотом на которых устанавливались такие же реакторы, как и на советских субмаринах.

Промышленные установки

Для целей производства используется ядерный реактор, принцип работы которого состоит в высокой производительности при низком уровне производства энергии. Это обусловлено тем, что длительное пребывание плутония в активной зоне приводит к накоплению нежелательного 240 Pu.

Производство трития

В настоящее время основным материалом, получаемым с помощью таких систем, является тритий (3 H или T) - заряд для Плутоний-239 имеет длительный период полураспада, равный 24100 годам, поэтому страны с арсеналами ядерного оружия, использующими этот элемент, как правило, имеют его больше, чем необходимо. В отличие от 239 Pu, период полураспада трития составляет примерно 12 лет. Таким образом, чтобы поддерживать необходимые запасы, этот радиоактивный изотоп водорода должен производиться непрерывно. В США в Саванна-Ривер (штат Южная Каролина), например, работает несколько реакторов на тяжелой воде, которые производят тритий.

Плавучие энергоблоки

Созданы ядерные реакторы, способные обеспечить электроэнергией и паровым отоплением удаленные изолированные районы. В России, например, нашли применение небольшие энергетические установки, специально предназначенные для обслуживания арктических населенных пунктов. В Китае 10-МВт установка HTR-10 снабжает теплом и электроэнергией исследовательский институт, в котором она находится. Разработки небольших автоматически управляемых реакторов с аналогичными возможностями ведутся в Швеции и Канаде. В период с 1960 по 1972 год армия США использовала компактные водяные реакторы для обеспечения удаленных баз в Гренландии и Антарктике. Они были заменены мазутными электростанциями.

Покорение космоса

Кроме того, были разработаны реакторы для энергоснабжения и передвижения в космическом пространстве. В период с 1967 по 1988 год Советский Союз устанавливал небольшие ядерные установки на спутники серии «Космос» для питания оборудования и телеметрии, но эта политика стала мишенью для критики. По крайней мере один из таких спутников вошел в атмосферу Земли, в результате чего радиоактивному загрязнению подверглись отдаленные районы Канады. Соединенные Штаты запустили только один спутник с ядерным реактором в 1965 году. Однако проекты по их применению в дальних космических полетах, пилотируемых исследованиях других планет или на постоянной лунной базе продолжают разрабатываться. Это обязательно будет газоохлаждаемый или жидкометаллический ядерный реактор, физические принципы работы которого обеспечат максимально высокую температуру, необходимую для минимизации размера радиатора. Кроме того, реактор для космической техники должен быть максимально компактным, чтобы свести к минимуму количество материала, используемого для экранирования, и для уменьшения веса во время старта и космического полета. Запас топлива обеспечит работу реактора на весь период космического полета.

Ядерный реактор, принцип действия, работа ядерного реактора.

Каждый день мы используем электричесто и не задумываемся над тем, как оно производится и как оно к нам попало. А тем не менее это одна из самых важных частей современной цивилизации. Без электричества не было бы ничего – ни света, ни тепла, ни движения.

Все знают про то, что электричевто вырабатывается на электростанциях, в том числе и на атомных. Сердце каждой АЭС – это ядерный реактор . Именно его мы будем разбирать в этой статье.

Ядерный реактор , устройство в котором проистекает управляемая цепная ядерная реакция с выделением тепла. В основном ти устройства используются для выработки электроэнергии и в качестве привода больших кораблей. Для того, чтобы представить себе, мощность и экономичность ядерных реакторов можно привести пример. Там где среднему ядерному реактору потребуется 30 килограмм урана, средней ТЭЦ потребуется 60 вагонов угля или 40 цистерн мазута.

Прообраз ядерного реактора был построен в декабре 1942 года в США под руководством Э. Ферми. Это была так называемая “Чикагская стопка”. Chicago Pile (впоследствии слово “Pile” наряду с другими значениями стало обозначать ядерный реактор). Такое название дали ему из-за того, что он напоминал собой большую стопку графитовых блоков, положенных один на другой.

Между блоками была помещены шарообразные “рабочие тела”, из природного урана и его диоксида.

В СССР первый реактор был построен под руководством академика И. В. Курчатова. Реактор Ф-1 был заработал 25 декабря 1946 г. Реактор был в форме шара, имел в диаметре около 7,5 метров. Он не имел системы охлаждения, поэтому работал на очень малых уровнях мощности.

Исследования продолжились и в 27 июня 1954 года вступила в строй первая в мире атомная электростанция мощностью 5 МВт в г. Обнинске.

Принцип действия атомного реактора.

При распаде урана U 235 происходит выделение тепла, сопровождаемое выбросом двух-трех нейтронов. По статистическим данным – 2,5. Эти нейтроны сталкиваются с другими атомами урана U 235 . При столкновении уран U 235 превращается в нестабильный изотоп U 236 , который практически сразу же распадается на Kr 92 и Ba 141 + эти самые 2-3 нейтрона. Распад сопровождается выделением энергии в виде гамма излучения и тепла.

Это и называется цепная реакция. Атомы делятся, количество распадов увеличивается в геометрической прогрессии, что в конечном итоге приводит к молниеносному, по нашим меркам высвобождению огромного количества энергии – происходит атомный взрыв, как последствие неуправляемой цепной реакции.

Однако в ядерном реакторе мы имеем дело с управляемой ядерной реакцией. Как такая становится возможной – рассказано дальше.

Устройство ядерного реактора.

В настоящее время существует два типа ядерных реакторов ВВЭР (водо-водяной энергетический реактор) и РБМК (реактор большой мощности канальный). Отличие в том, что РБМК – кипящий реактор, а ВВЭР использует воду под давлением в 120 атмосфер.

Реактор ВВЭР 1000. 1 - привод СУЗ; 2 - крышка реактора; 3 - корпус реактора; 4 - блок защитных труб (БЗТ); 5 - шахта; 6 - выгородка активной зоны; 7 - топливные сборки (ТВС) и регулирующие стержни;

Каждый ядерный реактор промышленного типа представляет собой котел, сквозь который протекает теплоноситель. Как правило это обычная вода (ок. 75% в мире), жидкий графит (20%) и тяжелая вода (5%). В экспериментальных целях использовался берилий и предполагался углеводород.

ТВЭЛ – (тепловыделяющий элемент). Это стержни в циркониевой оболочке с ниобийным легированием, внутри которых расположены таблетки из диоксида урана.

ТВЭЛ раквтора РБМК. Устройство твэла реактора РБМК: 1 - заглушка; 2 - таблетки диоксида урана; 3 - оболочка из циркония; 4 - пружина; 5 - втулка; 6 - наконечник.

Также ТВЭЛ включает в себя пружинную систему удержания топливных таблеток на одном уровне, что позволяет точнее регулировать глубину погружения/выведения топлива в активную зону. Они собраны в кассеты шестигранной формы, каждая из которых включает в себя несколько десятков ТВЭЛов. По каналам в каждой кассете протекает теплоноситель.

ТВЭЛы в кассете выделены зеленым.

Топливная кассета в сборе.

Активная зона реактора состоит из сотен кассет, поставленных вертикально и объединенных вместе металлической оболочкой – корпусом, играющим также роль отражателем нейтронов. Среди кассет, с регулярной частотой вставлены управляющие стержни и стержни аварийной защиты реактора, которые в случае перегрева призваны заглушить реактор.

Приведем в пример данные по реактору ВВЭР-440:

Управляющие могут перемещаться вверх и вниз погружаясь или наоборот, выходя из активной зоны, где реакция идет интенсивнее всего. Это обеспечивают мощные электромоторы, в совокупности с системой управления.Стержни аварийной защиты призваны заглушить реактор в случает нештатной ситуации, упав в активную зону и поглотив больше количество свободных нейтронов.

Каждый реактор имеет крышку, через которую производится погрузка и выгрузка отработавших и новых кассет.

Поверх корпуса реактора обычно устанавливается теплоизоляция. Следующим барьером идет биологическая защита. Это как правило железобетонный бункер, вход в который закрывается шлюзовой камерой с герметичными дверьми. Биологическая защита призвана не выпустить в атмосферу радиоактивный пар и куски реактора, если все таки произойдет взрыв.

Ядерный взрыв в современных реактора крайне мало возможен. Потому что топливо достаточно мало обогащено, и разделено на ТВЕЛы. Даже если расплавится активная зона, топливо не сможет настолько активно прореагировать. Масимум что может произойти – тепловой взрыв как на Чернобыле, когда давление в реакторе достигло таких величин, что металлический корпус просто разорвало, а крышка реактора, весом в 5000 тонн сделала прыжок с переворотом, пробив крышу реакторного отсека и выпустив пар наружу. Если бы чернобыльская АЭС была оснащена правильной биологической защитой, наподобие сегодняшнего саркофага, то катастрофа обошлась человечеству намного дешевле.

Работа атомной электростанции.

Если в двух словах, то рабобоа выглядит так.

Атомная электростанция. (Кликабельно)

После поступления в активную зону реактора с помощью насосов, вода нагревается с 250 до 300 градусов и выходит с “другой стороны” реактора. Это называется первым контуром. После чего направляется в теплобменник, где встречается со вторым контуром. После чего пар под давлением поступает на лопатки турбин. Турбины вырабатывают электричество.

Необъятная энергия крохотного атома

«Хороша наука - физика! Только жизнь коротка». Эти слова принадлежат ученому, сделавшему в физике удивительно много. Их однажды произнес академик Игорь Васильевич Курчатов , создатель первой в мире атомной электростанции.

27 июня 1954 года эта уникальная электростанция вступила в строй. У человечества появился еще один могучий источник электроэнергии.

Путь к овладению энергией атома был долгим и нелегким. Начался он в первые десятилетия XX века с открытия естественной радиоактивности супругами Кюри, с постулатов Бора, планетарной модели атома Резерфорда и доказательства такого, как сейчас кажется, очевидного факта - ядро любого атома состоит из положительно заряженных протонов и нейтральных нейтронов.

В 1934 году супруги Фредерик и Ирен Жолио-Кюри (дочь Мари Склодовской-Кюри и Пьера Кюри) обнаружили, что бомбардировкой альфа-частицами (ядрами атомов гелия) можно превратить обычные химические элементы в радиоактивные. Новое явление получило название искусственной радиоактивности .

И. В. Курчатов (справа) и А. И. Алиханов (в центре) со своим учителем А. Ф. Иоффе. (Начало 30-х годов.)

Если такую бомбардировку вести очень быстрыми и тяжелыми частицами, то начинается каскад химических превращений. Элементы с искусственной радиоактивностью постепенно уступят свое место стабильным элементам, которые уже не будут распадаться.

С помощью облучения или бомбардировки легко сделать явью мечту алхимиков - изготовить золото из других химических элементов. Только стоимость такого превращения значительно превысит цену полученного золота…

Деление ядер урана

Больше пользы (и, к сожалению, тревог) принесло человечеству открытое в 1938-1939 годах группой немецких физиков и химиков деление ядер урана . При облучении нейтронами тяжелые ядра урана распадаются на более легкие химические элементы, принадлежащие к средней части периодической системы Менделеева, и выделяют несколько нейтронов. Для ядер легких элементов эти нейтроны оказываются лишними… При «раскалывании» ядер урана может начаться цепная реакция: каждый из двух- трех полученных нейтронов способен в свою очередь произвести на свет несколько нейтронов, попав в ядро соседнего атома.

Общая масса продуктов такой ядерной реакции оказалась, как подсчитали ученые, меньше массы ядер исходного вещества - урана.

По уравнению Эйнштейна, связывающему массу с энергией, можно легко определить, что при этом должна выделиться огромная энергия! Причем произойдет это за ничтожно малое время. Если, конечно, цепная реакция станет неуправляемой и пройдет до конца…

На прогулке после конференции Э. Ферми (справа) со своим учеником Б. Понтекорво. (Базель, 1949 г.)

Огромные физические и технические возможности, скрытые в процессе деления урана, одним из первых оценил Энрико Ферми , в те далекие тридцатые годы нашего столетия еще очень молодой, но уже признанный глава итальянской школы физиков. Задолго до второй мировой войны он с группой талантливых сотрудников исследовал поведение различных веществ при нейтронном облучении и определил, что эффективность процесса деления урана можно значительно повысить… замедлив движение нейтронов. Как это ни странно на первый взгляд, при уменьшении скорости нейтронов увеличивается вероятность их захвата ядрами урана. Эффективными «замедлителями» нейтронов служат вполне доступные вещества: парафин, углерод, вода…

Переехав в США, Ферми продолжал быть мозгом и сердцем проводимых там ядерных исследований. Два дарования, обычно исключающие друг друга, сочетались в Ферми: выдающегося теоретика и блестящего экспериментатора. «Пройдет еще очень много времени, прежде чем мы сможем увидеть равного ему человека»,- писал крупный ученый У. Зинн после безвременной кончины Ферми от злокачественной опухоли в 1954 году в возрасте 53 лет.

Коллектив ученых, сплотившихся вокруг Ферми в годы второй мировой войны, решил на основе цепной реакции деления урана создать оружие невиданной разрушительной силы - атомную бомбу . Ученые спешили: вдруг нацистская Германия сумеет раньше всех изготовить новое оружие и использует его в своем бесчеловечном стремлении к порабощению других народов?

Строительство в нашей стране атомного реактора

Ученым удалось уже в 1942 году собрать и запустить на территории стадиона Чикагского университета первый атомный реактор . Стержни из урана в реакторе перемежались угольными «кирпичами» - замедлителями, а если цепная реакция все же становилась слишком бурной, ее можно было быстро остановить, введя в реактор пластины из кадмия, разъединявшие урановые стержни и полностью поглощавшие нейтроны.

Исследователи очень гордились придуманными ими простыми приспособлениями к реактору, которые сейчас вызывают у нас улыбку. Один из сотрудников Ферми в Чикаго, известный физик Г. Андерсон вспоминает, что кадмиевую жесть прибивали к деревянному бруску, который при необходимости мгновенно опускался в котел под действием собственной тяжести, что послужило поводом дать ему название «миг». Г. Андерсон пишет: «Перед запуском котла этот стержень следовало вытянуть наверх и закрепить веревкой. При аварии веревку можно было бы перерезать и «миг» занял бы свое место внутри котла».

На атомном реакторе была получена управляемая цепная реакция, проверены теоретические расчеты и предсказания. В реакторе шла цепь химических превращений, в результате которых накапливался новый химический элемент - плутоний. Его, как и уран, можно использовать для создания атомной бомбы.

Ученые определили, что существует «критическая масса» урана или плутония. Если атомного вещества достаточно много, цепная реакция приводит к взрыву, если мало, меньше «критической массы», то происходит просто выделение тепла.

Строительство атомной электростанции

В атомной бомбе простейшей конструкции уложены рядом два куска урана или плутония, причем масса каждого немного не «дотягивает» до критической. В нужный момент запал из обычного взрывчатого вещества соединяет куски, масса атомного горючего превышает критическое значение - и выделение разрушительной энергии чудовищной силы происходит мгновенно…

Ослепительное световое излучение, ударная волна, сметающая все на своем пути, и проникающее радиоактивное излучение обрушились на жителей двух японских городов - Хиросимы и Нагасаки - после взрыва американских атомных бомб в 1945 году, поселив с тех пор в сердцах людей тревогу перед страшными последствиями применения атомного оружия.

Под объединяющим научным началом И. В. Курчатова советские физики разработали атомное оружие.

Но руководитель этих работ не переставал думать и о мирном использовании атомной энергии. Ведь атомный реактор приходится интенсивно охлаждать, почему же это тепло не «отдать» паровой или газовой турбине, не применить для обогрева домов?

Через атомный реактор пропустили трубки с жидким легкоплавким металлом. Разогретый металл поступал в теплообменник, где передавал свое тепло воде. Вода превращалась в перегретый пар, начинала работать турбина. Реактор окружили защитной оболочкой из бетона с металлическим наполнителем: радиоактивное излучение не должно вырываться наружу.

Атомный реактор превратился в атомную электростанцию, несущую людям спокойный свет, уютное тепло, желанный мир…

Вот этот невзрачный серый цилиндр и является ключевым звеном российской атомной индустрии. Выглядит, конечно, не слишком презентабельно, но стоит понять его назначение и взглянуть на технические характеристики, как начинаешь осознавать, почему секрет его создания и устройства государство охраняет как зеницу ока.

Да, забыл представить: перед вами газовая центрифуга для разделения изотопов урана ВТ-3Ф (n-го поколения). Принцип действия элементарный, как у молочного сепаратора, тяжелое, по воздействием центробежной силы, отделяется от легкого. Так в чем же значимость и уникальность?

Для начала ответим на другой вопрос – а вообще, зачем разделять уран?

Природный уран, который вот прямо в земле лежит, представляет из себя коктейль из двух изотопов: урана-238 и урана-235 (и 0,0054 % U-234).
Уран-238 , это просто тяжелый, серого цвета металл. Из него можно сделать артиллерийский снаряд, ну или… брелок для ключей. А вот что можно сделать из урана-235 ? Ну во первых атомную бомбу, во вторых топливо для АЭС. И вот тут мы подходим к ключевому вопросу – как разделить эти два, практически идентичных атома, друг от друга? Нет, ну действительно, КАК?!

Кстати: Радиус ядра атома урана —1.5 10 -8 см.

Для того, что бы атомы урана можно было загнать в технологическую цепочку, его (уран) нужно превратить в газообразное состояние. Кипятить смысла нет, достаточно соединить уран с фтором и получить гексафторид урана ГФУ . Технология его получения не очень сложная и затратная, а потому ГФУ получают прямо там, где этот уран и добывают. UF6 является единственным легколетучим соединением урана (при нагревании до 53°С гексафторид (на фото) непосредственно переходит из твердого состояния в газообразное). Затем его закачивают в специальные емкости и отправляют на обогащение.

Немного истории

В самом начале ядерной гонки, величайшими научными умами, как СССР, так и США, осваивалась идея диффузионного разделения – пропускать уран через сито. Маленький 235-й изотоп проскочит, а «толстый» 238-й застрянет. Причем изготовить сито с нано-отверстиями для советской промышленности в 1946-м году было не самой сложной задачей.

Из доклада Исаака Константиновича Кикоина на научно-технического совете при Совете Народных Комиссаров (приведен в сборнике рассекреченных материалах по атомному проекту СССР (Ред. Рябев)): В настоящее время мы научились делать сетки с отверстиями около 5/1 000 мм, т.е. в 50 раз большими длины свободного пробега молекул при атмосферном давлении. Следовательно, давление газа, при котором разделение изотопов на таких сетках будет происходить, должно быть меньше 1/50 атмосферного давления. Практически мы предполагаем работать при давлении около 0,01 атмосферы, т.е. в условиях хорошего вакуума. Расчет показывает, что для получения продукта, обогащенного до концентрации в 90 % легким изотопом (такая концентрация достаточна для получения взрывчатого вещества), нужно соединить в каскад около 2 000 таких ступеней. В проектируемой и частично изготовленной нами машине рассчитывается получить 75-100 г урана-235 в сутки. Установка будет состоять приблизительно из 80-100 «колонн», в каждой из которых будет смонтировано 20-25 ступеней».

Ниже приведен документ — доклад Берии Сталину о подготовке первого атоиного взрыва. Внизу дана небольшая справка о наработанных ядерных материалах к началу лета 1949-го года.

И вот теперь сами представьте – 2000 здоровенных установок, ради каких-то 100 грамм! Ну а куда деваться-то, бомбы ведь нужны. И стали строить заводы, и не просто завода, а целые города. И ладно только города, электричества эти диффузионные заводы требовали столько, что приходилось строить рядом отдельные электростанции.

В СССР Первая очередь Д-1 комбината №813, была рассчитана на суммарный выпуск 140 граммов 92-93 %-ного урана-235 в сутки на 2-х идентичных по мощности каскадах из 3100 ступеней разделения. Под производство отводился недостроенный авиационный завод в поселке Верх-Нейвинск, что в 60 км от Свердловска. Позже он превратился в Свердловск-44, а 813-й завод (на фото) в Уральский электрохимический комбинат – крупнейшее в мире разделительное производство.

И хотя технология диффузионного разделения, пусть и с большими технологическими трудностями, было отлажена, идея освоения более экономичного центрифужного процесса не сходила с повестки дня. Ведь если удастся создать центрифугу, то энергопотребление сократится от 20 до 50 раз!

Как устроена центрифуга?

Устроена она более чем элементарно и похожа на старую стиральную машину, работающую в режиме «отжим/сушка». В герметичном кожухе находится вращающийся ротор. В этот ротор подается газ (UF6) . За счет центробежной силы, в сотни тысяч раз превышающей поле тяготения Земли, газ начинает разделяться на «тяжелую» и «легкую» фракции. Легкие и тяжелые молекулы начинают группироваться в разных зонах ротора, но не в центре и по периметру, а в верху и в низу.

Это возникает из-за конвекционных потоков – крышка ротора имеет подогрев и возникает противоток газа. Вверху и в низу цилиндра установлены две небольших трубочки – заборника. В нижнею трубку попадает обедненная смесь, в верхнюю – смесь с большей концентрацией атомов 235U . Эта смесь попадает в следующую центрифугу, и так далее, пока концентрация 235-го урана не достигнет нужного значения. Цепочка центрифуг называется каскад.

Технические особенности.

Ну во первых скорость вращения — у современного поколения центрифуг она достигает 2000 об/сек (тут даже не знаю с чем сравнить…в 10 раз быстрее чем турбина в авиадвигателе)! И работает она без остановки ТРИ ДЕСЯТКА лет! Т.е. сейчас в каскадах вращаются центрифуги, включенные еще при Брежневе! СССР уже нет, а они все крутятся и крутятся. Не трудно подсчитать, что за свой рабочий цикл ротор совершает 2 000 000 000 000 (два триллиона) оборотов. И какой подшипник это выдержит? Да никакой! Нет там подшипников.

Сам ротор представляет из себя обыкновенный волчок, внизу у него прочная иголка, опирающаяся на корундовый подпятник, а верхний конец висит в вакууме, удерживаясь электромагнитным полем. Иголка тоже не простая, сделанная из обычной проволоки для рояльных струн, она закалена очень хитрым способом (каким – ГТ). Не трудно представить, что при такой бешеной скорости вращения, сама центрифуга должна быть не просто прочной, а сверхпрочной.

Вспоминает академик Иосиф Фридляндер: «Трижды вполне расстрелять могли. Однажды, когда мы уже получили Ленинскую премию, случилась крупная авария, у центрифуги отлетела крышка. Куски разлетелись, разрушили другие центрифуги. Поднялось радиоактивное облако. Пришлось всю линию останавливать — километр установок! В Средмаше центрифугами командовал генерал Зверев, до атомного проекта он работал в ведомстве Берии. Генерал на совещании сказал: «Положение критическое. Под угрозой оборона страны. Если мы быстро не выправим положение, для вас повторится 37-й год». И сразу совещание закрыл. Придумали мы тогда совершенно новую технологию с полностью изотропной равномерной структурой крышек, но требовались очень сложные установки. С тех пор именно такие крышки и производятся. Никаких неприятностей больше не было. В России 3 обогатительных завода, центрифуг многие сотни тысяч.»
На фото: испытания первого поколения центрифуг

Корпуса роторов тоже поначалу были металлические, пока на смену им не пришел… углепластик. Легкий и особопрочный на разрыв, он является идеальным материалом для вращающегося цилиндра.

Вспоминает Генеральный директор УЭХК (2009-2012) Александр Куркин: «Доходило до смешного. Когда испытывали и проверяли новое, более «оборотистое» поколение центрифуг, один из сотрудников не стал дожидаться полной остановки ротора, отключил ее из каскада и решил перенести на руках на стенд. На вместо движения вперед, как не упирался, он с этим цилиндром в обнимку, стал двигаться назад. Так мы воочию убедились, что земля вращается, а гироскоп, это великая сила.»

Кто изобрел?

О, это загадка, погружённая в тайну и укутанная неизвестностью. Тут вам и немецкие плененные физики, ЦРУ, офицеры СМЕРШа и даже сбитый летчик-шпион Пауэрс. А вообще принцип газовой центрифуги описан еще в конце 19-го века.

Ещё на заре Атомного проекта инженер Особого конструкторского бюро Кировского завода Виктор Сергеев предлагал центрифужный метод разделения, но сначала его идею коллеги не одобряли. Параллельно над созданием разделительной центрифуги в специальном НИИ­-5 в Сухуми бились учёные из побеждённой Германии: доктор Макс Штеенбек, который при Гитлере работал ведущим инженером Siemens, и бывший механик «Люфтваффе», выпускник Венского университета Гернот Циппе. Всего в группу входило около 300 «вывезенных» физиков.

Вспоминает генеральный директор ЗАО «Центротех-СПб» ГК «Росатом» Алексей Калитеевский: «Наши специалисты пришли к выводу, что немецкая центрифуга абсолютно непригодна для промышленного производства. В аппарате Штеенбека не было системы передачи частично обогащённого продукта в следующую ступень. Предлагалось охлаждать концы крышки и замораживать газ, а потом его разморозить, собрать и пустить в следующую центрифугу. То есть, схема неработоспособная. Однако в проекте было несколько очень интересных и необычных технических решений. Эти «интересные и необычные решения» были соединены с результатами, полученными советскими учёными, в частности с предложениями Виктора Сергеева. Условно говоря, наша компактная центрифуга - на треть плод немецкой мысли, а на две трети - советской». Кстати, когда Сергеев приезжал в Абхазию и высказывал тем же Штеенбеку и Циппе свои мысли по поводу отбора урана, Штеенбек и Циппе отмахнулись от них, как от нереализуемых.

Итак что же придумал Сергеев.

А предложение Сергеева заключалось в создании отборников газа в виде трубок Пито. Но доктор Штеенбек, съевший зубы, как он считал, на этой теме, проявил категоричность: «Они станут тормозить поток, вызывать турбулентность, и никакого разделения не будет!» Спустя годы, работая над мемуарами, он об этом пожалеет: «Идея, достойная того, чтобы исходить от нас! Но мне она в голову не приходила…».

Позже, оказавшись за пределами СССР Штеенбек центрифугами больше не занимался. А вот Геронт Циппе перед отъездом в Германию имел возможность ознакомиться с опытным образцом центрифуги Сергеева и гениально простым принципом ее работы. Оказавшись на Западе, «хитрый Циппе», как его нередко называли, запатентовал конструкцию центрифуги под своим именем (патент №1071597 от 1957 года, заявлен в 13 странах). В 1957 году, переехав в США, Циппе построил там работающую установку, воспроизведя по памяти опытный образец Сергеева. И назвал ее, отдадим должное, «Русской центрифугой» (на фото).

Кстати, русская инженерная мысль проявила себя и в многих других случаях. В качестве примера можно привести элементарный аварийный запорный клапан. Там нет датчиков, детектеров и электронных схем. Там есть только самоварный краник, который своим лепестком касается станины каскада. Если что не так, и центрифуга меняет свое положение в пространстве, он просто поворачивается и закрывает входную магистраль. Это как в анекдоте про американскую ручку и русский карандаш в космосе.

Наши дни

На этой неделе автор этих строк присутствовал на знаменательном событии – закрытии российского офиса наблюдателей министерства энергетики США по контракту ВОУ-НОУ . Эта сделка (высокообогащенный уран – низкообогащенный уран) была, да и остается крупнейшим соглашением в области ядерной энергетики между Россией и Америкой. По условиям контракта российские атомщики переработали 500 тонн нашего оружейного (90%) урана в топливный (4%) ГФУ для американских АЭС. Доходы за 1993-2009 годы составили 8,8 млрд. долларов США. Это стало логическим исходом технологического прорыва наших ядерщиков в области разделения изотопов, сделанного в послевоенные годы.
На фото: каскады газовых центрифуг в одном из цехов УЭХК. Здесь их около 100 000 шт.

Благодаря центрифугам мы получили тысячи тонн относительно дешевого, как военного, так и коммерческого продукта. Атомная отрасль, одна из немногих оставшихся (военная авиация, космос), где Россия удерживает непререкаемое первенство. Одних только зарубежных заказов на десять лет вперед (с 2013 года по 2022 год), портфель «Росатома» без учета контракта ВОУ-НОУ составляет 69,3 миллиарда долларов. В 2011 году он перевалил за 50 миллиардов…
На фото склад контейнеров с ГФУ на УЭХК.

28 сентября 1942 г. было принято постановление Государственного Комитета Обороны № 2352сс «Об организации работ по урану». Эта дата считается официальным началом отсчета истории атомной отрасли России.