Кто первым разработал атомистическую концепцию бытия. Атомистическая школа

Атомистическая теория

Атомистика философов Древней Греции и Рима

Атомистика в период до XVII в

Физика в XVIII и XIX вв

Атомистика конца XIX – начала XX в

Атомистика первой половины XX в

Атомистика в предвоенные годы

Атомистика от послевоенных лет до наших дней

Заключение

Список литературы

Введение.

В конце тысячелетия, когда общество все дальше продвигается по пути техногенного развития, развиваются уже существующие и зарождаются новые производственные отрасли, когда «высокие технологии» вошли практически в каждый современный дом, и многие люди не могут представить жизни без них, мы более отчетливо видим, неограниченность человеческих потребностей. Чем больше человечество создает, тем большем оно потребляет. В том числе такого важного ресурса, как энергии.

Человечество с древних времен искало новые источники энергии. К середине XX столетия были освоены почти все ее природные источник, причем использование их в промышленных масштабах привело к значительному загрязнению отходами производства окружающей среды, особенно в крупных, промышленно развитых городах.

Овладение же ядерной энергией – величайшее, ни с чем не соизмеримое достижение науки и техники XX в. Высвобождение внутриядерной энергии атома, проникновение в природные кладовые тайн вещества, атома превосходит все, что когда-либо ранее удавалось сделать людям. Новый источник энергии огромной мощности сулил богатейшие неоценимые возможности.

Для открытия такого вида энергии, как внутриядерная энергия атома, понадобились долгие годы упорной и самоотверженной работы ученых многих поколений и разных стран. Высвобождение внутриядерной энергии атома потребовало такого уровня развития науки, такого научно-технического оборудования, таких аппаратуры, химических материалов, такой высокой культуры и техники производства, которые смогли сложиться в мире только к середине XX столетия. Однако человечество должно было пройти долгий путь поисков, преодолеть множество препятствий, отвергнуть прежние представления о природе вещей.

Народы Азии и Африки в глубокой древности многое сделали для понимания природных явлений и основных законов природы.

Древние цивилизации Китая, Индии, Вавилона, Египта, Греции заложили фундамент, на котором возникло натурфилософское учение, теоретическое мышление, преобразующее мифологию в эпос и формирующее при этом основные принципы строения и превращения веществ.

Натурфилософские представления, возникшие в древнем мире, в строгом смысле теоретическим мышлением становятся только в Греции.

В Индии атомистическая точка зрения была окрашена спиритуалистической тенденцией одухотворения природы, чего нет в греческой атомистике, поскольку греки развивали материалистический атомизм.

Греческая форма атомизма плодотворно повлияла на развитие науки. Наиболее полно и в ясном изложении дошли до нас изустные и письменные работы древних греков. Древние греки одними из первых стали изучать природу с помощью методов (примитивных в нашем понимании), сформулированных в их научных диспутах, лекциях. В Древней Греции человеческий разум осознавал свою силу, и именно тогда начали появляться систематические научные исследования.

Атомистика философов Древней Греции и Рима.

Характерные черты естествознания того времени – это накопление эмпирического материала, попытки объяснить мир с помощью общих умозрительных гипотез и теорий, в которых предсказывалось, предвосхищалось немало позднейших научных открытий. К примеру, в ту эпоху зародились идеи об атомарном, дискретном строении материи.

Древние греки создали учение о материальной первооснове всех вещей, родоначальниками которого были Фалес Милетский (625-547 до н. э.), Анаксимандр (610-547 до н. э.), Анаксимен (585-525 до н. э.) и другие античные философы. С вершин нынешних знаний многое в их учении кажется наивным. Так, Фалес считал, что основой всего является вода. Анаксимандр усматривал такую основу в некоем «алейроне» – единой, вечной, бескачественной материи, а Анаксимен – в воздухе. Все они представляли первоначально существующего как нечто материальное.

Другой известный древнегреческий философ Гераклит Эфесский (530-470 до н. э.) считал основой основ огонь. Все вещи появляются из огня и снова в него возвращаются. Гераклит утверждал: «Мир единый, не создан никем из богов и никем из людей, а был, есть и будет вечно живым огнем, закономерно воспламеняющимся и закономерно угасающим».

Непосредственными предшественниками атомистов были Эмпедокл (490-430 до н. э.) и Анаксагор (500-428 до н. э.), они выдвинули концепцию элементов, из которых построена Вселенная.

По учению Эмпедокла такими материальными элементами являются огонь, воздух, вода и земля. Они вечны, неразрушимы, хотя и изменяются по числу и величине путем соединения и разделения. Эмпедокл утверждал: «Ничто не может произойти из ничего, и никак не может то, что есть, уничтожиться». Эта мысль Эмпедокла очень близка к знакомому нам закону сохранения вещества, который играет такую фундаментальную роль в современной физике.

Анаксагор считал, что мир состоит из бесконечного множества частиц («семян») веществ и в результате их совокупного движения темный холодный воздух отделяется от светлого горячего эфира, а частицы соединяются с себе подобными. Так образуются материальные тела. Следует обратить внимание на высказывания Анаксагора об эфире. О нем впоследствии через ряд веков ученые будут вести длительные споры, дискуссии.

Ученые Древней Греции за свои смелые идеи и высказывания подвергались наказаниям и преследованиям. Так, Анаксагор был изгнан из Афин за утверждение о том, что вопреки укоренившимся верованиям солнце, луна, звезды являются лишь раскаленными камнями и не имеют божественной природы.

Философы Левкипп и его ученик Демокрит (460-370 до н. э.) стали основателями атомистической теории. По учению Левкиппа материя состоит из отдельных частиц – атомов, находящихся в пустом пространстве, и слишком мелких, чтобы их можно было увидеть в отдельности. Атомы непрерывно движутся в пространстве и воздействуют друг на друга при помощи толчков и давления.



Более полно и стройно атомистическая теория была изложена великим древнегреческим философом-материалистом Демокритом. Хотя им было написано много сочинений по математике, физике, астрономии, медицине, филологии, теории музыки и др., но из многочисленных его сочинений до нас дошло только около 300 фрагментов.

В сочинениях Демокрита много сказано о душе, о человеческих отношениях, о мышлении, об этике и другом, но нас в данном случае интересуют только атомы, только материалистическое воззрение Демокрита.

Приведем некоторые принципиальные положения Демокрита, имеющие отношение к атомистической теории:

1. Ничто не возникает из ничего и ничего не переходит в ничто.

2. Материя состоит из бесконечного числа мельчайших, неделимых частиц – атомов.

3. Атомы вечны и неизменны, а все сложные тела, из них состоящие, изменчивы и преходящи.

4. Не существует ничего, кроме атомов и «чистого» пространства.

5. Атомы вечно движутся. Движение всегда присуще атомам и происходит в силу господства во Вселенной закона универсальной необходимости.

6. Атомы бесконечны по числу и бесконечно разнообразны по форме.

7. Во Вселенной существует бесконечное множество миров. Наш мир один из них.

8. Различие между вещами связано с различием их атомов по числу, величине, форме...

Естественно-научное мировоззрение древних получило свое развитие в трудах знаменитого философа того времени Аристотеля (384-322 до н. э.). В своем творчестве он охватил почти все существовавшие тогда отрасли знаний. Хотя Аристотель критиковал своего учителя философа-идеалиста Платона (427-347 до н. э.), он не был материалистом. Он признавал объективное существование материального мира и его познаваемость, но противопоставлял земной и небесный миры, верил и учил верить в существование божественных сил.

Аристотель считал, что все космические тела состоят из эфира, основного элемента природы, в котором изначально заложено совершенное движение по кругу.

Естественный путь познания природы, учил Аристотель, идет от менее известного и явного для нас к более явному и известному с точки зрения природы вещей. Он рассматривал такие общие понятия, как материя и движение, пространство и время, конечное и бесконечное.

В своей работе «Физика» Аристотель подробно разобрал взгляды своих предшественников – Анаксагора, Левкиппа, Демокрита и др. Он резко критиковал воззрения атомистов, признающих существование бесчисленного множества атомов и миров. По Аристотелю реальный мир конечен, ограничен и построен из «конечного числа» элементов. Понятие пустоты по Аристотелю противоречит действительности. Бесконечное разреженное пустое пространство ведет к бесконечному движению, а это, по мнению Аристотеля, невозможно.

«Канонизированное» учение Аристотеля в средние века надолго задержало развитие атомистических воззрений. И все же учение об атомах, атомистика, пройдя через многие века, выдержало ожесточенную борьбу и дошло до наших дней с более глубокими представлениями об атоме, полученными в результате огромного числа физико-химических экспериментов и исследований по физике атома.

В Древнем Риме поэт и философ Тит Лукреций Кар (99-55 до н. э.) в своей знаменитой поэме «О природе вещей» изложил атомистическое учение греческого философа Эпикура.

Представитель афинской школы Эпикур (341-270 до н. э.), а за ним Лукреций пытались существованием атомов объяснить все естественные и социальные явления. Лукреций рисует модель движения атомов, уподобляя его движению пылинок в солнечном луче в темной комнате. Это по существу одно из первых в истории естественных наук описание молекулярного движения. Созданная древними философами теория атомов совпадает с современными концепциями только в самых общих чертах.

Гениальные догадки философов-материалистов, атомистов Древней Греции и Рима предопределили рождение современной атомистической теории – физики атома, ядерной физики. Мы и сегодня поражаемся изумительным научным догадкам и идеям древних философов, основанным только на чисто умозрительных предположениях почти без всяких экспериментальных подтверждений. Это лишний раз доказывает, что возможностям человеческого разума нет пределов. Экскурсом в древность мы хотели подчеркнуть, что толчком к поискам энергии атомного ядра явился вывод древнегреческих и других древних философов о том, что материя состоит из бесконечного числа мельчайших неделимых частиц – атомов. Наука XIX и XX вв., непрерывно обогащаясь новыми знаниями и идеями, подтверждаемыми научными экспериментами и теориями, продвигалась вперед к познанию атома. Движение к высвобождению внутриядерной энергии сопровождалось длительным, многовековым накоплением знаний во многих отраслях науки.

Атомистика в период до XVII в.

В период средневековья атомистика переживала тяжелые времена. В средние века господствовали схоластика, теология и открытия в науке были спорадическими. И в те времена люди немало сделали, продвигаясь к вершинам познания, но все же такого расцвета, как в Древней Греции и Риме, в странах Западной Европы не наблюдалось.

Средневековый Восток имел более широкие, чем Западная Европа, связи со многими близкими и далекими странами, что способствовало развитию геометрии, алгебры, тригонометрии, медицины и других наук. Так, труды Аристотеля, Птолемея и других пришли в Европу в переводах с арабского. Арабы были как бы связующим звеном между античной и средневековой культурой и наукой.

В 1121 г. в Средней Азии появился курс физики Аль-Хазини, в котором были таблицы удельных весов ряда твердых и жидких тел. Много сделал хорезмский ученый Бируни (973-1048) в опытах по определению удельной массы веществ. В Бухаре жил знаменитый ученый философ Абу Али Ибн Сина (Авиценна). В своих работах он, последователь учения Аристотеля и позднее неоплатонизма, проповедовал вечность материи.

В середине XV в. в экономическом, политическом и культурном развитии Европы начинают отчетливо проступать новые, самобытные черты.

Николай Коперник (1473-1543) сломал общепризнанную до того концепцию мироздания, по которой Земля считалась неподвижной по отношению к Солнцу. Коперник отбросил геоцентрическую систему Птолемея и создал гелиоцентрическую систему мироздания. Возникнув в астрономии, она распространилась и на физику, дав новый импульс развитию атомистических идей. Атомы неощутимы, считал Коперник, несколько атомов не составляют видимого тела. И все же число этих частиц можно так умножить, что их будет достаточно для слияния в заметное тело. Коперник вплотную подошел к материалистической атомистике. В эпоху Возрождения физические наблюдения и опыты еще не носили систематического характера, хотя и были достаточно широко развиты.

Началу использования в физике экспериментального метода положил Галилео Галилей (1564-1642), итальянский физик, механик, астроном, один из основателей естествознания. Его влияние на развитие механики, оптики, астрономии неоценимо. Основа мировоззрения Галилея – признание объективного существования мира, т. е. существования вне и независимо от человеческого сознания. Галилей считал, что мир бесконечен, материя вечна. Материя состоит из абсолютно неделимых атомов, ее движение – единственное, универсальное механическое перемещение. Галилей экспериментально подтвердил ряд гипотез древних философов об атомах. В своих трудах он поддержал гелиоцентрическую систему мироздания, за что жестоко пострадал от католической инквизиции.

Научная деятельность Галилея, его огромной важности открытия, научная смелость имели решающее значение для утверждения гелиоцентрической системы мира.

Научные открытия и наследие великого английского ученого Исаака Ньютона (1643-1727) относятся к трем основным областям: математике, механике и астрономии. Ньютон вошел в историю как подлинный корифей науки, его основные труды и сейчас не утратили своего значения, хотя время и вносит коррективы в некоторые их разделы. Первый ощутимый удар по учению Ньютона нанесла теория электромагнитного поля Дж. Максвелла (1831-1879), основателя классической электродинамики и статистической физики. Утверждение современной физики было подготовлено открытием рентгеновских лучей, радиоактивности элементов и их взаимных превращений, теорией относительности Эйнштейна, квантовой теорией и др. И все же это ни в коей мере не умаляет огромного значения для науки классических работ И. Ньютона.

Физика в XVIII и XIX вв.

В XVIII и XIX вв. классическая физика вступила в период, когда многие ее положения стали подвергаться серьезному переосмыслению. В 1746 г. М. В. Ломоносов (1711-1765) писал: «Мы живем в такое время, в которое науки после своего возобновления в Европе возрастают и к совершенству приходят».

Михаил Ломоносов – первый русский профессор химии, автор первого русского курса физической химии. В области физики он оставил нам ряд важных работ по кинетической теории газов, теории теплоты, оптике и др. Рассматривая основу химических явлений» Ломоносов на базе атомно-молекулярных представлений развивал учение о «нечувствительных» (т. е. неощутимых) частицах материи – «корпускулах» (молекулах). Он полагал, что всем свойствам вещества можно дать исчерпывающее объяснение с помощью представления о различных чисто механических движениях корпускул, состоящих из атомов. Он утверждал, что химическая теория должна строиться на законах механики и математики.

В химических работах Ломоносова важную роль играет атомистика, она – краеугольный камень его научного мышления. Ломоносов дал свою формулировку принципа сохранения материи и движения: «...все перемены, в натуре случающиеся, такого суть состояния, что сколько чего у одного тела отнимается, столько присовокупится к другому... Сей всеобщий естественный закон простирается и в самые правила движения, ибо тело, движущее своею силою другое, столько же оныя у себя теряет, сколько сообщает другому, которое от него движение получает...»

Введение понятия «корпускулы» наряду с понятием «элемента» (атома) означало признание того, что определенная совокупность атомов создает новое единство, действующее как целое, некий новый качественный «узел». Это была перспективная идея, ибо только через естествознание человечество могло прийти к идее развития, образования сложных форм вещества из соединения простых.

Самый характер соединения Ломоносов мыслил не как простое сложение составных элементов. Он подчеркивал, что природа новых образований зависит не только от того, какие элементы входят в эти образования (корпускулы), но и от того, каков характер связи между элементами. Ломоносов, приняв гипотезу о вращательном движении молекул-корпускул, вывел ряд следствий:

1. Частицы-корпускулы имеют шарообразную форму.

2. При более быстром вращении частиц теплота увеличивается, а при более медленном – уменьшается.

3. Горячее тело должно охлаждаться при соприкосновении с холодным и, наоборот, холодные тела должны нагреваться вследствие ускорения движения при соприкосновении.

Ломоносов критиковал теорию теплорода (или флогистона – не имеющей массы невесомой жидкости), которую он считал возвратом к представлениям древних об элементарном огне.

По мысли Ломоносова, упругость газов (воздуха) является свойством коллектива атомов. Сами атомы «должны быть телесными и иметь продолжение», форма их «весьма близка» к шарообразной.

Воззрения на теплоту как форму движения мельчайших «нечувствительных» частиц высказывались еще в XVI в. Бэконом, Декартом, Ньютоном, Гуком. Эту же идею разрабатывал и М. Ломоносов, однако он оставался почти в одиночестве, так как многие его современники были сторонниками концепции «теплорода». И только позднее Дэви и затем Юнг и Мор доказали, что теплота является формой движения и что следует рассматривать теплоту как колебательное движение частиц материи. Последующими работами Майера, Джоуля, Гельмгольца был установлен закон сохранения и превращения энергии.

Атомно-молекулярное учение о материи лежало в основе многих физических и химических исследований на всем протяжении истории науки. Со времени Бойля оно стало служить химии и было положено Ломоносовым в основу учения о химических превращениях.

Итальянский ученый Э. Торричелли (1608-1647) доказал существование атмосферного давления. Французский математик и физик Б. Паскаль (1623-1662) открыл закон: давление, производимое на поверхность жидкости внешними силами, передается жидкостью одинаково во всех направлениях.

Вместе с Г. Галилеем и С. Стевиным Блез Паскаль считается основоположником классической гидростатики. Он указал на общность основных законов равновесия жидкостей и газов. В 1703 г. немецкий ученый Г. Шталь (1659-1734) сформулировал теорию, точнее, гипотезу о природе горючести в веществах.

Английский ученый Р. Бойль (1627-1691) ввел в химию атомистику, это дало основание Ф. Энгельсу сказать о работах Бойля: «Бойль делает из химии науку». Голландец X. Гюйгенс (1629-1695) вошел в историю науки как создатель подтвержденного экспериментами первого научного труда по волновой оптике – «Трактата о свете»; он был первым физиком, исследовавшим поляризацию света.

Наука о тепле потребовала точных температурных измерений. Появились термометры с постоянными точками отсчета: Фаренгейта, Делиля, Ломоносова, Реомюра, Цельсия.

А. Лавуазье (1743-1794) разработал в 1780 г. кислородную теорию, выявил сложный состав воздуха. Объяснил горение, тем самым доказав несостоятельность теории флогистона, который и М. В. Ломоносов исключал из числа химических элементов.

Работавший в Петербургской академии наук Л. Эйлер (1707-1783) установил закон сохранения момента количества движения, развил волновую теорию света, определил уравнения вращательного движения твердого тела.

Американский ученый Б. Франклин (1706-1790) разработал теорию положительного и отрицательного электричества, доказал электрическую природу молнии.

Английский физик Г. Кавендиш (1731-1810) и независимо от него французский физик Ш. Кулон (1736-1806) открыли закон электрических взаимодействий.

Итальянский ученый А. Вольта (1745-1827) сконструировал первый источник постоянного тока («вольтов столб») и установил связь между количеством электричества, емкостью и напряжением. Одним из первых трудов, посвященных описанию нового источника постоянного тока, была выпущенная в 1803 г. книга русского ученого В. Петрова «Сообщение о гальвано-вольтовых опытах».

Начало практическим исследованиям электромагнетизма положили работы датчанина X. Эрстеда, француза А. Ампера, русских ученых Д. М. Велланского и Э. Ленца, англичанина М. Фарадея, немецкого физика Г. Ома и др.

Крупнейший немецкий ученый Г. Гельмгольц (1821-1894) распространил закон сохранения энергии с механических и тепловых процессов на явления электрические, магнитные и оптические. Им был установлен ряд законов, касающихся газов, заложены основы кинетической теории газов, термодинамики, открыты инфракрасные и ультрафиолетовые лучи.

М. Фарадей (1791-1867) - английский физик, химик и физико-химик, основоположник учения об электромагнитном поле, электромагнитной индукции – открыл количественные законы электролиза.

В 1803 г. английский физик и химик Дж. Дальтон (1766-1844) опубликовал основополагающие работы по химической атомистике, вывел закон кратных отношений. Дальтон ввел в науку, в частности в химию, понятие атомного веса (атомной массы), приняв за единицу вес водорода. По Дальтону, атом - мельчайшая частица химического элемента, отличающаяся от атомов других элементов своей массой. Он открыл явление диффузии газов (кстати, явление, которым примерно через сто лет воспользовались для получения высокообогащенного урана при создании ядерных бомб).

В XVII–XIX вв. атомы считались абсолютно неделимыми и неизменными частицами материи. Атомистика в значительной мере носила все еще абстрактный характер. В XIX в. большой вклад в разработку научной базы атомистики внесли такие ученые, как Максвелл, Клаузиус, Больцман, Гиббс и др.

В недрах химической науки родилась гипотеза о строении всех атомов из атомов водорода. Именно химико-физики ближе всех подошли к пониманию физического смысла идей атомистики. Они постепенно приближались к выяснению природы атомизма, а последующие поколения ученых – к пониманию действительного строения атома и его ядра.

Предыстория познания атомного ядра начинается в 1869 г. с гениального открытия Д. И. Менделеевым периодического закона химических элементов. Д. И. Менделеев (1834-1907) был первым, кто попытался классифицировать все элементы, и именно ему мы обязаны нынешним видом Периодической системы. Пытаясь охватить все элементы, он вынужден был заключить, что некоторые места Периодической системы элементов (теперь носящей его имя) не заполнены. Исходя из положения в таблице и свойств химических элементов, соседствующих с ними в периодах и группах, он предсказал химические свойства трех отсутствовавших тогда элементов. Примерно через 10 лет эти элементы (галлий, скандий и германий) были открыты и заняли свои места в таблице Менделеева.

Периодический закон стал как бы последней инстанцией, выносящей окончательный приговор соотношению между химическим эквивалентом и атомной массой. Так, первоначально бериллий считался трехвалентным с атомной массой 13,5, а индий – двухвалентным с атомной массой 75,2, а благодаря их положению в таблице были проведены тщательные проверки и уточненные атомные массы стали равными 9 и 112,8 соответственно. Урану сначала приписывали атомную массу, равную 60, затем исправили на 120, однако периодический закон показал, что значение атомной массы урана 240.

Периодическая система элементов стала в конце прошлого века памятником упорству, труду и аккуратности в экспериментальной работе. В Периодической системе Менделеева нашли отражение сложность структуры атома и значимость ранее неизвестных основных характеристик атомного ядра – его массового числа А и порядкового номера 2. В течение всей последующей истории ядерной физики периодический закон Менделеева, обогащенный новыми открытиями, служил путеводной нитью исследований. Именно с конца XIX в. подход к изучению атома стал действительно научным, имеющим экспериментальную основу.

Никто из естествоиспытателей той эпохи не проник так глубоко в понимание взаимосвязи между атомами и молекулами, как Д. И. Менделеев. В 1894 г., когда еще не была ясна модель не только атома, но и молекулы, Менделеев выдвинул гипотезу о строении атома и молекулы. Положив в основу признание существования атомов и молекул, связи между материей и движением, он высказал мысль, что атомы можно представить себе как бесконечно малую Солнечную систему, находящуюся в непрерывном движении. Неизменность атомов, подчеркивал Менделеев, не дает исследователю никакого основания считать их «неподвижными» и «недеятельными в их внутренней сущности», атомы подвижны.

Менделеев показал, что развитие науки невозможно, если отказаться от признания объективной реальности атомов. Он подчеркивал глубокую внутреннюю связь между атомистическими воззрениями древних (Демокрита) и материалистической философией. Развитие классического учения Демокрита составило, по Менделееву, основу материализма.

Спустя почти 30 лет после появления Периодической системы Менделеева начала свое победное шествие новая наука – ядерная физика. А примерно 60 лет спустя американские ученые Г. Сиборг и другие, синтезировавшие в 1955 г. элемент 101, дали ему название «менделевий», как они выразились «...в знак признания приоритета великого русского химика Дмитрия Менделеева, который первым использовал Периодическую систему элементов для предсказания химических свойств тогда еще не открытых элементов. Этот принцип явился ключевым при открытии почти всех трансурановых элементов».

В 1964 г. имя Д. И. Менделеева занесено на Доску почета науки Бриджпортского университета (штат Коннектикут, США) в числе имен величайших ученых мира.

Д. И. Менделеев при жизни был известен во многих странах, получил свыше 150 дипломов и почетных званий от русских и зарубежных академий, ученых обществ и учебных заведений.

Атомистика конца XIX – начала XX в.

Гениальные догадки древних ученых о том. что все вещества состоят из атомов, к концу XIX в. полностью подтвердились. К тому времени также было установлено, что атом как единица любого вещества неделим (само слово «атом» по-гречески означает «неделимый»).

С открытия А. Беккерелем в 1896 г. явления радиоактивности берет свое начало новый раздел физики – ядерная физика. С этого момента, собственно, и начинается непосредственно история исследования атомной энергии.

Немецкий физик В. Рентген (1845-1923) открыл в 1895 г. излучение, названное им Х-лучами (впоследствии они получили название рентгеновских лучей, или рентгеновского излучения). Он создал первые рентгеновские трубки и сделал анализ некоторых свойств открытого им излучения. Это открытие и последующие исследования сыграли важную роль в изучении строения атома, структуры вещества.

Рентгеновское излучение нашло широкое применение в медицине, технике, в различных областях науки.

24 февраля 1896 г. французский физик А. Беккерель (1852-1908) на заседании Парижской Академии наук докладывал: «Фотографическую пластинку Люмьера обертывают двумя листами очень плотной черной бумаги... На верхний лист бумаги кладут какое-либо люминесцирующее вещество (бисульфат урана и калия), а затем все это выставляется на несколько часов на солнце. При проявлении фотопластинки на черном фоне появляется силуэт люминесцирующего вещества». Позднее А. Беккерель убедился в том, что нет необходимости выставлять фотопластинку на солнце, и более того, если урановое соединение в течение многих месяцев находится в темноте, то процесс проявления все равно происходит. При этом у физиков возник вопрос, откуда же черпается энергия, хотя и очень небольшая, но непрерывно выделяющаяся из урановых соединений в виде ионизирующего излучения?

Открытие радиоактивности урана Беккерелем невозможно переоценить, хотя важность этого открытия поняли не сразу. В тот период физики были полностью поглощены работами по изучению свойств рентгеновского излучения, и потому высказывались предположения, что явление радиоактивности сродни рентгеновскому излучению. Но рентгеновское излучение возникает при электрическом разряде, происходящем в сильно разреженном газе, независимо от природы газа, независимо от вещества, из которого сделаны электроды. Радиоактивность же солей урана, обнаруженная Беккерелем, не требует электрического напряжения - ни большого, ни малого. Не нужен и разреженный газ. Рентгеновское излучение возникает только в присутствии электрического разряда, излучение, открытое Беккерелем, – всегда, непрерывно, и его излучает только уран.

Но только ли уран? Этот вопрос и был поставлен Марией Склодовской-Кюри. Таким образом, был открыт новый этап исследований, который провели супруги Кюри.

Мария Кюри воспользовалась наблюдением Беккереля, что под влиянием излучения, испускаемого ураном, воздух становится проводником электричества. Это упростило поиск веществ, которые испускают так называемые беккерелевы лучи. М. Кюри натолкнулась на удивительный факт: урановая смолка – руда, из которой добывают металлический уран, испускает беккерелевы лучи с гораздо большей интенсивностью, чем чистый уран. В результате супруги Кюри открыли два новых радиоактивных вещества, которые они назвали полонием и радием.

Всем веществам, которые способны излучать лучи Беккереля, Мария Кюри дала общее название – радиоактивные (что означает способные испускать лучи).

С помощью метода сцинтилляций, камеры Вильсона, ионизационной камеры и другой аппаратуры Марии и Пьеру Кюри, Резерфорду, Содди, Вилларду и другим ученым либо независимо, либо совместно удалось обнаружить и изучить три типа лучей Беккереля, испускаемых ураном. Каждый из них получил свое название: альфа, бета, гамма. Альфа-лучами назвали те лучи, которые магнитным полем отклоняются слабо и представляют собой поток положительно заряженных частиц. Бета-лучами назвали лучи, которые магнитным полем отклоняются сравнительно сильно и представляют собой поток электронов, т. е. отрицательно заряженных частиц. Гамма-лучами назвали лучи, которые магнитным полем не отклоняются вовсе.

Успехи физики XIX в. позволили существенно продвинуться в создании целостной системы, объединяющей механику Ньютона и электродинамику Максвелла и Лоренца. Теория электромагнитного поля, созданная Максвеллом, вошла в историю науки наряду с такими фундаментальными обобщениями, как ньютонова механика, квантовая механика. Процесс коренного преобразования физики подготавливался научными открытиями конца XIX в., сделанными В. Рентгеном (рентгеновские лучи, 1895 г.), А. Беккерелем (естественная радиоактивность урана, 1896 г.), Дж. Томсоном (открытие электрона, 1897 г., первая модель строения атома), М. Склодовской-Кюри (радиоактивные элементы – полоний и радий, 1898 г.), М. Планком (теория квантов, 1900 г.) и др. Выполненные к началу XX в. работы химиков и физиков, теоретиков и экспериментаторов, вплотную приблизили науку об атоме к проблеме высвобождения ядерной энергии атома.

Атомистика первой половины XX в.

Исследования по радиоактивнос­ти стали проводиться в России поч­ти сразу после открытия Беккереля. Ученые И. И. Боргман (1900 г.) и А. П. Афанасьев исследовали свойст­ва радиоактивного излучения, в част­ности лечебные свойства целебных грязей. В. К. Лебединский (1902 г.) и И. А. Леонтьев (1903 г.) изучали влия­ние радиоактивности на искровые разряды и определили одними из пер­вых природу гамма-лучей. Н. А. Ор­лов исследовал действие радия на ме­таллы, парафин, легкоплавкие орга­нические вещества. Кроме Петербург­ского университета такого рода рабо­ты велись в Медицинской академии, в университетах Новороссийска, Харькова и других городов. Важные результаты в этой области были по­лучены В. А. Бородовским, Г. Н. Антоновым, Л. С. Коловрат-Червинским.

В. А. Бородовский, закончив фи­зико-математический факультет Юрьевского университета в 1902 г., работал с 1908 г. в Англии в лабора­тории Кенсингтона, а затем в лабо­ратории Кавендиша (Кембридж). Им написана работа «Поглощение бета-лучей радия», он одним из первых установил наличие радия в ферганс­кой радиоактивной руде. Именно из нее в 1921 г. В. Г. Хлопин получил отечественный препарат радия.

Г. Н. Антонов работал несколь­ко лет в лаборатории Резерфорда. В 1911 г. он открыл уран V. Среди ученых были сомнения. Тогда Резерфорд по рекомендации Содой пере­дал Антонову 60 г ураннитрата, с по­мощью которого в России Антонов доказал свою правоту. «Уран превра­щается одновременно в два продук­та, - докладывал Антонов на заседа­нии Российского физико-химичес­кого общества (РФХО), – в уран Х и в меньшем количестве в уран V».

Результаты работ Л. С. Коловрат-Червинского по радиоактивности имели большое научное значение. С 1906 г. он в течение пяти лет работал в лаборатории М. Кюри, провел эк­сперименты по исследованию бета-лучей и составил «Таблицы констант радиоактивных веществ». Его рабо­ты нашли отражение в монографии Марии Кюри и в книге Резерфорда «Радиоактивные вещества и их излу­чение». Коловрат-Червинским было написано около 250 научных трудов. Он был одним из первых крупных ученых дореволюционной России, который после Октябрьской револю­ции развернул в нашей стране рабо­ты по радиологии. Смерть в 1921 г. в возрасте 49 лет прервала его работу в Государственном рентгенологичес­ком и радиологическом институте.

В 1910 г. в Одессе была создана радиологическая лаборатория, в Том­ске спустя некоторое время была ор­ганизована аналогичная лаборатория.

После 1917 г. был создан Ра­диевый институт под руководством В. И. Вернадского, заместителем ко­торого стал В. Г. Хлопин. В послере­волюционные годы было создано радиевое производство на базе оте­чественных месторождений.

Без участия в этих работах русских ученых-радиологов всех направлений не было бы базы для создания оте­чественной радиевой промышленнос­ти и развития советской радиологии, а в будущем советской атомной на­уки и промышленности.

История высвобождения и исполь­зования внутриядерной энергии ато­ма не могла идти самостоятельным, каким-то отдельным путем, это ис­тория развития многих наук, прежде всего физики и химии.

В открытии и высвобождении внутриядерной энергии атома при­няли участие ученые многих стран мира, разных национальностей и раз­нообразных профессий. Этот невиданный ранее источник энергии, скрывающийся в недрах атома, при­надлежит всему человечеству.

В 1900 г. немецкий физик-теоре­тик М. Планк (1858-1947) ввел но­вую универсальную постоянную, на­званную им элементарным квантом действия. Введя понятие кванта энер­гии, он сформулировал квантовую гипотезу, положив тем самым начало квантовой теории, или, коротко, атомизации действия. В первые годы эта теория не имела «шумного успеха», пока ее не применил А. Эйнштейн и не показал ее Незаменимость для понимания явлений, происходящих в микромире.

В 1910-1914 гг. А. Эйнштейн (1879-1955) создал общую теорию относительности, в которой сформу­лировал новый подход к проблеме пространства и времени. Принцип относительности Эйнштейна – за­кон такой же абсолютной силы и значения, как и закон сохранения энергии. Позже Эйнштейн был вынужден эмигрировать из Германии и отказаться от немецкого гражданства. Он уехал в 1932 г. из гитлеровской Гер­мании, стал эмигрантом, переселил­ся в США и приступил к работе в Принстоне в Институте высших ис­следований. Принимал участие в ан­тивоенном движении, выступал про­тив фашизма.

Но фашизм наступал. Гитлеровс­кая Германия в марте 1938 г. захвати­ла Австрию, в марте 1939 г. аннекси­ровала Чехословакию.

Великобритания и Франция шли на уступки территориальным притя­заниям гитлеровского правительст­ва, надеясь этим удовлетворить по­ползновения гитлеровской Германии и направить ее военную силу против СССР.

Общественность всех стран чув­ствовала, что мировая война стано­вится неизбежной. Ученые США, в частности, понимали, к каким тяже­лым последствиям она может привести, поскольку гитлеровская Гер­мания обладала очень сильным науч­ным и техническим потенциалом. Немецкие ученые вплотную подошли к возможности применения внут­риядерной энергии атомов урана в военных целях. Именно в Германии впервые было осуществлено деление ядер урана. Вот почему ученые – физики-эмигранты, и среди них Сцилард и Теллер, ­- убеждали Альберта Эйнштейна обратиться к президенту Соединенных Штатов Ф. Рузвельту с предложением развернуть в США работы по созданию ядерного ору­жия, ядерной бомбы, с тем чтобы опередить Германию.

После длительных размышлений и внутренней борьбы Эйнштейн пред­ложил начать работы по созданию ядерной бомбы, хотя по натуре своей он был убежденным пацифистом.

2 августа 1939 г. Альберт Эйнштейн направил письмо президенту США Франклину Делано Рузвельту.

Ф. Д. Рузвельту

Президенту Соединенных Штатов

Белый дом, Вашингтон

Сэр!

Некоторые недавние работы Фер­ми и Сциларда, прочитанные мной в рукописи, заставляют меня ожидать, что уран может быть в ближайшем будущем превращен в новый и важ­ный источник энергии. Некоторые аспекты возникшей ситуации, по-видимому, требуют бдительности и, при необходимости, быстрых дейст­вий со стороны правительства. Я счи­таю своим долгом обратить Ваше внимание на следующие факты и рекомендации.

В течение последних четырех ме­сяцев благодаря работам Жолио во Франции, а также Ферми и Сциларда в Америке стало реальным получе­ние ядерной реакции при больших количествах урана, вследствие чего можно освободить значительную энергию и получить большие коли­чества радиоактивных элементов. Можно считать почти достоверным, что это будет достигнуто в ближай­шем будущем. В свою очередь это может способствовать созданию бомб, возможно, исключительно мощных бомб нового типа. Одна бом­ба этого типа, доставленная на ко­рабле и взорванная в порту, пол­ностью разрушит весь порт с приле­гающей к нему территорией. Такие бомбы могут оказаться слишком тя­желыми для воздушной перевозки.

Соединенные Штаты обладают малым количеством урана. Ценные месторождения его находятся в Ка­наде и Чехословакии. Серьезные ис­точники – в Бельгийском Конго. Ввиду этого было бы желательным установление постоянного контакта между правительством и группой физиков, исследующих в Америке проблемы цепной реакции.

Для такого контакта Вы могли бы уполномочить лицо, пользую­щееся Вашим доверием, неофици­ально выполнять следующие обя­занности:

а) поддерживать связь с прави­тельственными учреждениями, информировать их об исследованиях и давать им необходимые рекомен­дации, в особенности в части обес­печения Соединенных Штатов ура­ном;

б) содействовать ускорению эк­спериментальных работ, ведущихся сейчас за счет внутренних средств университетских лабораторий, путем привлечения частных лиц и промыш­ленных лабораторий, обладающих нужным оборудованием.

Мне известно, что Германия в настоящее время прекратила прода­жу урана из захваченных чехословац­ких рудников.

Необходимость таких шагов, быть может, станет понятна, если учесть, что сын заместителя германского министра иностранных дел фон Вайцзеккер прикомандирован к Фи­зическому институту Общества кай­зера Вильгельма в Берлине, где в настоящее время повторяются аме­риканские работы по урану.

Искренне Ваш Альберт Эйнштейн

Олд Гров Ред, Нассау-Пойнт-Пеконик, Лонг Айленд

В интервью японской газете в 1951 г. А. Эйнштейн так объяснил свою роль в создании ядерной бом­бы:

«Мое участие в создании ядерной бомбы состояло в одном-единственном поступке, я подписал письмо президенту Рузвельту, в котором под­черкивал необходимость проведения в крупных масштабах экспериментов по изучению возможности создания ядерной бомбы. Я полностью отда­вал себе отчет в том, какую опасность для человечества означает успех это­го мероприятия. Однако вероятность того, что над той же самой пробле­мой с надеждой на успех могла рабо­тать и нацистская Германия, заста­вила меня решиться на этот шаг. Я не имел другого выбора, хотя я всегда был убежденным пацифис­том...»

Письмо А. Эйнштейна не сразу привело к действиям администрации США.

Рузвельт распорядился о созда­нии Консультативного комитета по урану в тот же день, когда ответил на письмо Эйнштейна, но решение о развертывании крупномасштабной программы создания ядерного ору­жия было принято только в октябре 1941 г., после получения сведений о работе англичан в этом направле­нии.

Нападение японских военно-воз­душных сил на Пирл-Харбор 8 де­кабря 1941 г. привело к тому, что США объявили войну Японии, Гер­мании и Италии. После вступления США в войну программа создания ядерной бомбы перешла из стадии научных исследований в стадию прак­тических разработок.

В середине 1942 г. администрация США поняла, что «...несколько ки­лограммов урана-235 или плутония-239 представляют собой взрывчатку, эквивалентную по своей мощи не­скольким тысячам тонн обычных взрывчатых веществ» (из доклада В. Буша 17 июня 1942 г. президенту США Ф. Д. Рузвельту).

В результате указаний президента США 13 августа 1942 г. был создан специальный округ инженерных войск под названием Манхэттенский в Лос-Аламосе, штат Нью-Мексико, в пус­тыне, недалеко от Санта-Фэ. Руково­дителем Манхэттенского проекта был назначен бригадный генерал инже­нерных войск Л. Гровс, а научным руководителем – физик-теоретик Юлиус Роберт Оппенгеймер.

С этого времени началась работа огромного масштаба, поглотившая колоссальные средства, материаль­ные ресурсы, человеческие усилия и приведшая к созданию ядерной бом­бы невиданной мощи в июле 1945 г.

Но вернемся к истокам освоения нового источника энергии.

В 1911 г. Э. Резерфорд (1871-1937) сделал в Манчестере доклад «Рассея­ние альфа- и бета-лучей и строение атома». X. Гейгер и Э. Марсден про­вели экспериментальную провер­ку идеи Резерфорда о строении ато­ма. Они подтвердили существование ядра атома как устойчивой его части, несущей в себе почти всю массу ато­ма и обладающей положительным зарядом.

В 1913 г. Н. Бор (1885-1962) опуб­ликовал серию статей «О строении атомов и молекул», открывших путь к атомной квантовой механике. При­мерно в это же время начались, как известно, первые трудности электро­магнитной концепции микромира. Уже квантовая механика несла в себе совершенно новые взгляды на мик­ропроцессы. Так, в основу многих уравнений квантовой механики вхо­дило значение массы микрочастиц, а открытие спина (от английского spin – вращение), т. е. собственного мо­мента количества движения, у элек­трона С. Гаудсмитом и Дж. Уленбеком (1925 г.) и выдвижение принци­па запрета В. Паули (1925г.) противо­речили существовавшим представле­ниям в физике. Но наиболее важной оказалась гипотеза нейтрино, выдвинутая в 1931 г. Паули с целью объяс­нения кажущихся аномалий в энер­гетическом распределении электро­нов, вылетающих при бета-распаде. Нейтрино было четвертой элемен­тарной частицей (после электрона, фотона и протона), с которой столкнулась физика того времени.

В. Паули предположил, что при бета-распаде из ядра вылетает не одна частица – электрон (как предполага­лось ранее), а две – электрон и час­тица, названная Паули нейтрино.

На основе опытов Дж. Аллена, выполненных 10 лет спустя, в 1942 г. было установлено, что нейтрино име­ет массу покоя, значительно мень­шую (1/30) массы электрона, и полностью лишено электрического за­ряда и магнитного момента.

Если природа трех ранее откры­тых элементарных частиц (электро­на, фотона и протона) могла считать­ся электромагнитной, то в отноше­нии нейтрино сказать это было почти невозможно. Однако до 1932 г. элек­тромагнитная теория господствова­ла. Решающим шагом в признании новой физической идеи стало откры­тие Чедвиком (1932 г.) пятой частицы - нейтрона.

История открытия нейтрона до­статочно поучительна. Еще в 1920 г. Резерфорд выдвинул предположение о существовании нейтральной час­тицы. В 1930 г. В. Боте и Г. Бекер сообщили о проникающем излуче­нии, появляющемся при бомбарди­ровке альфа-частицами ядер легких элементов. Особенно значительный эффект получался при бомбардиров­ке бериллия. В качестве детектора излучения был использован счетчик Гейгера. Боте и Бекер предположи­ли, что наблюдаемое излучение пред­ставляет собой поток гамма-квантов высокой энергии.

Почти одновременно с этими не­мецкими учеными Ирен и Фреде­рик Жолио-Кюри повторили их опыты, используя источник поло­ния большой активности. Детек­тором служила ионизационная ка­мера. Используя разные экраны, они убедились в «сверхпроникающей» способности исследуемого излучения. Помещая на пути пото­ка частиц экраны из водородсодержащих веществ (парафина в том числе), они ожидали, что поток уменьшится, но он даже увели­чился. Ученые пришли к выводу, что столкнулись с каким-то новым явлением. Продолжая опыты, они убедились, что излучение Боте-Бекера способно выбивать ядра из ато­мов водорода, гелия и азота. Они установили, что выбитые частицы приобретали значительную энергию и что в пространство излучаются элек­троны высоких энергий. Жолио-Кюри опубликовали результаты сво­их опытов и выяснилось, что энер­гия излучения Боте-Бекера гораздо больше энергии гамма-излучения.

В феврале 1932 г. ученик Резерфорда Дж. Чедвик после ознакомле­ния с результатами опытов Жолио-Кюри измерил с помощью электрон­ного оборудования, пропорционального усилителя, отдельные импуль­сы, возникающие при прохождении ядер и электронов через счетчик, и разделил их. Оборудование, которым пользовался Чедвик, было более со­вершенным, и результаты его опытов показали, что первоначальное пред­положение Боте и Бекера, а также И. и Ф. Жолио-Кюри об электро­магнитной природе сверхпроникающего излучения неверно.

Чедвик установил, что это излуче­ние состоит из электрически ней­тральных частиц с массой, пример­но равной массе ядра протона. Это были нейтроны.

Открытие нейтрона является ре­зультатом работы ученых трех стран: Германии, Франции и Англии. Исто­рия открытия нейтрона лишний раз иллюстрирует, что путь к высотам науки изобилует сложностями и весь­ма тернист.

Открытие нейтрона указало на су­ществование в природе нового типа сил – ядерных. Значение этого откры­тия для развития ядерной физики необычайно велико, оно позволило пре­одолеть трудности, стоявшие на пути познания строения ядра атома. Нейт­рон – это «золотой ключик», открыв­ший двери в ядерную энергетику.

Открытие нейтрона стимулирова­ло появление фундаментальных направлений науки, таких как физика атомного ядра, физика элементар­ных частиц. Впоследствии самостоя­тельной областью физики стала ней­тронная физика.

При этом следует отметить, что открытие нейтрона не было случайным, на его существование указы­вало много сопутствующих фактов, и потому его обнаружение – зако­номерное следствие знаменитых опытов Резерфорда 1919 г. по ис­кусственному расщеплению ядер альфа-частиц, работ Боте и Бекера, И. и Ф. Жолио-Кюри. Но обнаружил нейтрон Дхеймс Чедвик. Свое от­крытие Чедвик опубликовал в статье «Возможное существование нейтро­на», которую он направил в печать 17 февраля 1932 г.

Этот день по праву считается днем открытия нейтрона.

О гениальном английском физике Эрнесте Резерфорде (1871-1937) говорилось уже не раз, но в связи с открытием нейтрона Дж. Чедвиком, его учеником и со­трудником Кавендишской лаборато­рии, следует сказать о нем и о его вкладе в физическую науку.

Э. Резерфорд заложил основы уче­ния о радиоактивности и строении атома. Он первым осуществил искусственное превращение элементов, установил, что корпуску­лярное излучение состоит из альфа- и бета-лучей.

В 1903 г. совместно с Ф. Содди Резерфорд объяснил радиоактивность как спонтанный распад атома вещес­тва, при котором он меняет свое место в периодической системе эле­ментов. Резерфорд доказал, что в центре атомов существует массивное положительно заряженное ядро, он же предложил планетарную модель атома, в центре которого находится положительно заряженное ядро, а вокруг него по орбитам движутся отрицательно заряженные электро­ны. (Здесь хочется на­помнить о гениальных догадках древ­негреческих философов, которые указывали, что атомы непрерывно движутся.) За 12 лет до открытия нейтрона Резерфорд высказал предположение о существовании нейтральной час­тицы - нейтрона, и в 1932 г. оно подтвердилось.

В Кавендишской лаборатории Резерфорда работали и стажирова­лись молодые ученые из разных стран и в том числе и русские уче­ные П. Л. Капица, К. И. Синельников, А. И. Лейпунский, Ю. Б. Харитон.

Итак, 1932 год стал годом великих открытий в ядерной физике. В этом году возникла физика нового типа, имеющая дело со строением атомов и исследующая неизвестные до того времени силы и взаимодействия частиц в ядре атома. Три открытия 1932 г. считаются особенно важными для дальнейшего развития атомной и ядерной физики:

1. открытие нейтрона;

2. обнаружение позитрона К. Андерсоном в космических лучах. Это была первая открытая учеными ан­тичастица;

3. открытие американским хими­ком Г. Юри вместе с Ф. Брикведце и Г. Мерфи дейтерия – тяжелого водо­рода, стабильного изотопа водорода с массовым числом 2. При создании первой американской бомбы Юри руководил производством тяжелой воды (с дейтерием) и участвовал в работах по разделению изотопов ура­на.

Хотя мы и называем 1932 год годом великих открытий, но роль этих замечательных открытий в раз­витии науки была определена го­раздо позднее. Тогда за ними лишь следовали события, которые слу­жили как бы продолжением этих открытий.

Первым наиболее выдающимся открытием, совершенным после того, как Чедвик доказал существование нейтрона, было открытие Ирен и Фредериком Жолио-Кюри в 1934 г. искусственной радиоактивности. В этом могли видеть некоторую закономерность. Ведь Жолио-Кюри сде­лали важный шаг к открытию ней­трона, и естественно, что они про­должали опыты по исследованию нейтрона. Для этого у них в лабора­тории било все приспособлено. Они имели источники альфа-излучения и опыт работы в молодой тогда области физики элементарных частиц. Их работы показали, что при облучении альфа-частицами легких элементов некоторые из них испускали наряду с нейтронами и позитроны.

И. и Ф. Жолио-Кюри предпол­ожили, что натолкнулись на какое-то совершенно новое явление, нигде ранее не упоминавшееся, а именно – позитронное излучение. В своих опы­тах они бомбардировали алюминий альфа-частицами большой скорости, а затем постепенно удаляли источ­ник альфа-частиц, но алюминиевый листок продолжал излучать положи­тельные электроны, т. е. позитроны, в течение достаточно продолжитель­ного времени. Так была открыта ис­кусственная радиоактивность (тер­мин родился в Париже, где почти за 40 лет до этого появился термин «радиоактивность»).

Искусственную радиоактивность открыли в 1933 г., а в 1935 г. Ф. Жо­лио-Кюри в своем Нобелевском до­кладе сказал: «Мы видим, что не­сколько сотен различного рода ато­мов, составляющих нашу планету, не являются раз и навсегда созданными и существуют не вечно. Мы воспри­нимаем это именно так потому, что некоторые существуют еще и сейчас. Другие же, менее устойчивые атомы уже исчезли. Из этих последних некоторые, вероятно, будут вновь получены в лабораториях. До настоя­щего времени удалось получить лишь элементы с небольшой продолжи­тельностью жизни - от доли секунды до нескольких месяцев. Чтобы полу­чить достойные упоминания количества элементов со значительно большой продолжительностью жиз­ни, необходимо располагать очень мощным источником излучений».

Ныне в США, России, Европе и других странах появились очень мощ­ные источники излучений в виде ус­корителей протонов и электронов на гигантские энергии.

Дж. Кокрофт (1897-1967), ан­глийский физик, в 1932 г. вместе с Э. Уолтоном создал высоковольтный генератор, работающий по принципу умножения напряжения. Ускоряя ионы до больших скоростей, они сумели в первой половине 1932 г. ускоренными протонами осуществить ядерную реакцию, облучая литиевую мишень, и расщепили ядра атомов лития. Здесь уместно добавить, что в Советском Союзе, в Харьковском физико-техническом институте, ученые-физики К. Д. Синельников, А. К. Вальтер, А. И. Лейпунский и Г. Д. Латышев повторили к ноябрю 1932 г. эксперимент на каскадном генераторе, созданном харьковчана­ми, и расщепили ядро лития. Это сообщение произвело на Западе фу­рор, так как никто не мог ожидать, что в далеком Харькове есть такие кадры физиков и возможности со­здать каскадный генератор в корот­кие сроки.

Вскоре после открытия нейтрона возникли гипотезы о строении ядра. В дискуссии включились физики-тео­ретики, и в их числе Д. Д. Иваненко. В 1932 г. он высказал гипотезу о про­тон-нейтронном составе ядер. Эта модель не сразу была принята, и, в частности, теоретик В. Гейзенберг провел большую работу, участвуя в дискуссиях по структуре атомного ядра: он развил идею обменного характера взаимодействий нуклонов в ядре.

Итальянский физик Э. Ферми (1901-1954), в 1938 г. эмигрировав­ший из фашистской Италии в США, внес большой вклад в развитие со­временной теоретической и экспериментальной физики. Он заложил основы нейтронной физики, впер­вые наблюдал искусственную радио­активность, вызванную бомбардиров­ками нейтронами ряда элементов, в том числе урана, создал теорию этого явления. Позднее, а именно в декаб­ре 1942 г., Ферми первому в мире удалось осуществить управляемую цепную реакцию в построенном им в США первом в мире ядерном реак­торе.

В 1934 г. Э. Ферми пытался с помощью бомбардировки нейтрона­ми элемента урана получить заурановые элементы, не существующие в природе. В результате бомбардиров­ки наблюдалось образование ряда радиоактивных веществ. Химичес­кие исследования показали, что эти вещества являлись изотопами из­вестных элементов периодической системы. Наблюдаемое им впервые в истории физики деление ядер урана не было правильно понято. Ферми предположил, что ядро урана, захватив нейтрон, становится бета-радиоактивным и после испускания бета-частицы превращается в ядро нового трансуранового элемента.

Эта работа Ферми и посвященные тем же проблемам работы его друга Э. Сегре привлекли широкое внима­ние ученых к возможности деления ядер урана. В конце 1934 г. извест­ный физико-химик Ида Ноддак вы­ступила в техническом журнале с общим тезисом о том, что с научной точки зрения недопустимо говорить о новых элементах, не установив, что при облучении урана нейтронами не возникают какие-либо известные химические элементы: «Допустимо, что при бомбардировке тяжелых ядер нейтронами эти ядра распадаются на несколько больших осколков, кото­рые являются изотопами известных элементов, хотя и не соседних с об­лученными».

«Читая сегодня эту фразу, мы ви­дим в ней ясное предсказание воз­можности деления ядер» (это выска­зывание принадлежит В. Герлаху, известному немецкому физику). Но в 1934 г. на эту мысль Иды Ноддак не обратили внимания, ее пророчество повисло в воздухе, и только после опубликования работ по делению ядер О. Ганом и Ф. Штрассманном в 1939 г. И. Ноддак попыталась при­своить себе честь открытия деления ядер урана. Но ученые с этим не согласились, так как Ган и Штрассманн осуществили деление ядер урана медленными нейтронами.

Атомистика в предвоенные годы.

Этот период был полон ожиданий новых открытий в ядерной физике.

В начале нашего столетия очень немногие верили в решение «атом­ной проблемы». В первые годы XX в. в университетских учебниках физи­ки было написано «атомная гипоте­за», даже не теория. Более того, лю­дей, веривших в нее, высмеивали, их исследования не поддерживали. Слишком уж многое было неясно. И только ученые – физики и химики, дерзкая мысль которых проникла в строение атома, понимали, какие глубины и тайны таит в себе природа микромира.

Виднейшие ученые-физики, очень многое сделавшие для проникнове­ния внутрь атома и его ядра, хорошо осознавали, какая бездна трудностей ждет их на пути овладения тайнами строения ядра. В 1933 г. в своем письме Британской ассоциации Э. Резерфорд заявил: «...эти превращения атомов представляют исключитель­ный интерес для ученых, но мы не сможем управлять ядерной энергией в такой степени, чтобы это имело какую-нибудь коммерческую цен­ность. И я считаю, что вряд ли мы когда-нибудь будем способны это сде­лать. Наш интерес к этой проблеме – чисто научный».

Резерфорд интуитивно понимал, каких огромных усилий, в том числе и материальных, может потребовать управление ядерной энергией. Ему было ясно, что только военные на­добности могут заставить государст­во освоить ядерную энергию, а это­го, хотелось бы верить, опасался ве­ликий ученый. Последние фразы есть, конечно, домысел авторов. К сожалению, на алтарь войны часто приносились в жертву гениальные научные открытия, величайшие на­учные достижения.

В 1938 г. И. Кюри вместе с П. Савичем установила, что при по­падании нейтронов в ядро урана пос­леднее разделяется и получается элемент, обладающий свойствами лантана, а не трансуранового эле­мента, как предполагал в 1934г. Э. Ферми, бомбардируя уран. По существу Ферми и И. Кюри были в своих опытах очень близки к откры­тию деления ядер урана, к сенсации в физике, к установлению факта, что существуют ядерные реакции, при которых ядро «раскалывается» на два приблизительно равных по массе ос­колка. Кстати, А. фон Гроссе пытал­ся доказать, что в опыте Ферми из урана образуется изотоп предшес­твующего атома – протактиния. Од­нако Э. Ферми образование протак­тиния решительно отвергал и был прав.

Физики-ядерщики, теоретики и экспериментаторы, в 1937-1938 гг. были в некоем ажиотаже, в состоя­нии ожидания скорой сенсации в ядерной физике. Кстати, в эти годы и в жизни народов происходили круп­ные события. Гитлеровская Германия набирала силу. В марте 1938 г. Германия захватила всю Австрию. На Мюнхенской конференции в сен­тябре 1938 г. главами Великобри­тании (Н. Чемберлен), Франции (Э. Даладье), Италии (Б. Муссолини) и Германии (А. Гитлер) было подпи­сано соглашение о передаче Герма­нии Судетской области Чехослова­кии (со всеми сооружениями, укреп­лениями, фабриками, заводами, за­пасами сырья, путями сообщения и пр.). Это соглашение можно рас­сматривать как «умиротворение» Гер­мании за счет стран Центральной и Юго-Восточной Европы.

Многое ученые, подвергшись го­нениям со стороны гитлеровского режима, были вынуждены эмигриро­вать из Германии и искать убежища во Франции, Англии, США и других странах. Это были годы настойчивых попыток овладеть ядерной энергией; сознавая перспективность этого но­вого источника энергии, ученые упор­но продвигались к цели. И успех был достигнут в конце декабря 1938 г.

На какой-то стадии в дискуссии по опытам Э. Ферми и И. Жолио-Кюри включились О. Ган, Л. Мейтнер и Ф. Штрассманн из Германии. У них был большой опыт в области радиохимии, и поэтому они посчита­ли необходимым разобраться в таком важном и сложном вопросе, как со­здание новых химических элемен­тов. Новые элементы Ферми напом­нили им об уране-2, открытом О. Гамом в 1923 г. и оказавшемся изотопом протактиния. Это исклю­чало протактиниевую гипотезу Гроссе.

Началась погоня за трансурано­выми элементами, которые, как было доказано впоследствии, не могли ими оказаться.

С большим трудом и постепенно Ган, Мейтнер и Штрассманн уточ­няли и расширяли представления о последствиях облучения урана и то­рия нейтронами. (В Германии, в Далемском институте, источники ней­тронов обладали слабой интенсив­ностью, и потому, следя за ходом опытов, Ган, Мейтнер и Штрассманн тратили много времени, сменяя друг друга каждые восемь часов.) Работа И. Кюри и Савича в Париже подтвердила, что при воздействии мед­ленных нейтронов на уран возникает не протактиний, а элемент, напоми­нающий лантан, т. е. элемент с по­рядковым номером, гораздо мень­шим номера урана. Но это утвержде­ние не было ими распространено в среде физиков.

Работы И. Кюри и Савича послу­жили поводом для Гана и Штрассманна (Л. Мейтнер вынуждена была покинуть Берлин в июле 1938 г.) еще раз исследовать химическую природу бета-излучателей» возникающих в уран-нейтронных реакциях. Они вы­явили, что в осадок выпал и барий. Развитие этих событий запечатлено в обширной переписке между тремя главными участниками – О. Ганом, Л. Мейтнер и О. Фришем (племянником Мейтнер). Эти частные пись­ма запечатлели историю открытия деления ядер урана медленными нейтронами. Вот одно из писем Гана в Стокгольм, Л. Мейтнер: «Вечер, понедельник, 19 декабря 1938г. Весь день я и неутомимый Штрассманн при поддержке ассистенток Либер и Боне работали с продуктами урана. Сейчас 11 часов вечера, в 12.00 вер­нется Штрассманн, и я смогу пойти домой...» После рассказа о ходе экс­перимента он пишет: «Через пару дней я вновь напишу тебе о результа­тах. Сердечный привет твоему Отто». Л. Мейтнер ответила 21 декабря: «Ваши результаты ошеломляют. Про­цесс, идущий на медленных нейтро­нах и приводящий к барию...»

21 декабря О. Ган пишет Л. Мей­тнер: «Активированный барий не превращается в излучающий лан­тан...»

22 декабря 1938 г. в редакцию журнала «Naturwissenschaft» поступи­ла работа О. Гана и Ф. Штрассманиа «О доказательстве существования и свойствах щелочноземельных метал­лов, возникающих при облучении урана нейтронами». В статье было написано об образовании ядер ба­рия.

Несколько позже Л. Мейтнер и О. Фриш показали, что ядра урана-235 делятся под действием медлен­ных нейтронов на два осколка. Они ввели термин «деление ядер».

Деление тяжелого ядра (урана) сопровождается выделением энергии осколков порядка 200 МэВ. В после­дующем было установлено, что при бомбардировке урана медленными нейтронами число нейтронов на один акт деления составляет 2,5. Для более тяжелых элементов число нейтронов несколько увеличивается, именно это обстоятельство позволяет осущест­влять цепную ядерную реакцию.

28 января 1939 г. в «Naturwissenschaft» была направлена вторая, бо­лее обстоятельная статья О. Гана и Ф. Штрассманна «Доказательство возникновения активных изотопов бария из урана и тория при облуче­нии их нейтронами». Сразу же после-публикации в январе 1939 г. статьи Гана и Штрассманна о делении ура­на в ряде лабораторий опыты с рас­щеплением ядер были повторены и дали подтверждение результатов ра­бот О. Гана и Ф. Штрассманна.

В Принстоне (США) Н. Бор и А. Уилер приступили к разработке теории деления ядра (как капли). В их статье была ссылка на работы Я. И. Френкеля (из ЛФТИ), который независимо от Бора и Уилера пос­троил теорию деления. Капельной моделью ядра занимался и извест­ный ленинградский физик-теоретик (эмигрировавший из СССР) Г. Гамов.

Ныне, когда прошло уже много лет с того времени, как был открыт процесс деления ядер атомов, можно с уверенностью сказать, что это было одно из тех редких открытий, кото­рое оказало значительное влияние на жизнь всего человечества. Качественно процесс деления был объяснен учеными сразу трех стран: Бором (Дания), Уилером (США) и Френкелем (СССР). Деление ядер происходит при определенном соот­ношении кудоновских сил отталки­вания, которые стремятся разорвать тяжелое ядро (урана), и сил поверх­ностного натяжения, которые это­му препятствуют. Основной величи­ной в этой модели являлся так назы­ваемый порог деления, который, как предполагалось, определялся только этими противоборствующими сила­ми.

В советских научных центрах, и прежде всего связанных с ядерной физикой, интерес к радиохимичес­ким исследованиям ядра атома вспых­нул с новой силой после сообщений об открытии деления ядер урана в Германии в начале 1939 г. Уже первая информация о теории процесса поз­воляла сделать фантастические вы­воды: новая форма ядерной реакции высвобождает огромное количество энергии.

Внеочередное заседание так на­зываемого «ядерного семинара», регулярно проводимого в ЛФТИ И. В. Курчатовым, привлекло внима­ние не только сотрудников Физтеха, но и ученых из других организаций, в том числе из Института химичес­кой физики: Н. Н. Семенова, Ю. Б. Харитона, Я. Б. Зельдовича и др.

На семинаре было высказано пред­положение, что при бомбардиров­ке урана нейтронами возникают не только крупные осколки, но и сво­бодные нейтроны. Ю. Б. Харитон и Я. Б. Зельдович развили мысль, что свободные нейтроны могут быть захвачены соседними урановыми ядрами и реакция станет нарастать лавиной, т.е. по принципу цеп­ной реакции, а это взрыв! В том же 1939 г. Ю. Б. Харитон и Я. Б. Зельдович показали возможность осу­ществления цепной реакции деле­ния ядер урана-235.

Впечатляющие исследования, свя­занные с проблемой атома, проводи­лись в РИАН. РИАН ставил задачей изучение явлений природной и ис­кусственной радиоактивности. Запу­щенный в те далекие годы первый в СССР и Европе циклотрон на энергию 4 МэВ позволил получить ре­зультаты по взаимодействию ней­тронов почти со всеми элементами периодической системы. С помощью циклотрона были сформированы нейтронные пучки высокой интен­сивности. Среди продуктов деления В. Хлопиным, М. Пасвик и Н. Во­лковым весной 1939 г. были обна­ружены радиоактивные изотопы брома, теллура и сурьмы.

И. В. Курчатов, работая над про­блемой ядра атома, отлично созна­вал, что сооружаемый в РИАН цик­лотрон является идеальной установ­кой для получения интенсивных по­токов нейтронов. Вложив много тру­да и изобретательности, Курчатов ускорил ввод этой установки и вмес­те с Мысовским, создателем циклот­рона, получил много интересных результатов. Но И. В. Курчатов хоро­шо понимал, что нужен циклотрон на еще большие энергии, и получил согласие на сооружение к 1 января 1942 г. циклотрона на 12 МэВ в специально построенном для него новом здании ЛФТИ. Однако его запуску помешала война, и он был введен в эксплуатацию уже после войны, в 1949 г.

В ЛФТИ были получены сообще­ния, что сотрудник Калифорнийско­го университета У. Либби пытался наблюдать вылет вторичных ней­тронов в процессе спонтанного деления ядер урана, но потерпел неуда­чу. Чувствительность его метода была такой, что он мог бы обнару­жить спонтанное деление, если бы период полураспада не превосходил 10 14 лет. Поручив решить эту задачу своим ученикам Г. Н. Флерову и К. А. Петржаку, Курчатов возглавил работу в целом. После длительных и упорных исследований он понял, что надо избавиться от окружающего фона путем защиты эксперименталь­ной установки, камеры, толстым сло­ем вещества. Самое простое, что при­шло ему в голову, – это погрузиться с аппаратурой на подводной лодке в глубины моря. Но оказалось, что вблизи Ленинграда Балтийское море мелкое – 20-30 м. Такого слоя во­ды было явно недостаточно для эф­фективной защиты от проникающе­го космического излучения. Тогда Курчатов договорился с руководст­вом Московского метрополитена о том, чтобы ему разрешили провести этот эксперимент на одной из глубокозаложенных шахт станции мет­ро. Получив согласие, Курчатов от­командировал своих сотрудников Г. Н. Флерова и К. А. Петржака в Москву.

Аппаратуру они разместили на станции метро «Динамо». По ночам, когда движение поездов метро пре­кращалось, на глубине 60 м Флеров и Петржак проводили свои измерения. Эффект получился постоянный, без помех. Через месяц работы Курчатов пришел к заключению, что вся сово­купность экспериментальных данных служит бесспорным доказательством существования нового вида радиоактивности – спонтанного, самопро­извольного деления урана. Курчатов потребовал, чтобы Флеров и Петржак подготовили сообщение об этом открытии для опубликования в печа­ти. Короткое сообщение А. Ф. Иоф­фе направил по трансатлантическо­му кабелю – каблограммой – в аме­риканский журнал «Physical Review», и в июне 1940 г. она была опублико­вана.

По мнению Флерова и Петржака, под этим сообщением должна была стоять также и подпись Курчатова, но он отказался его подписывать, так как, по его выражению, не хотел «затенять» своих учеников.

Дни и месяцы предвоенного 1940 г. неуклонно вели ученых к высвобождению внутриядерной энергии, скрытой в недрах атомов. Приближе­ние этого волнующего события чув­ствовал каждый, кто стремился уско­рить его осуществление.

В печати, не только научной, все чаще появлялись сообщения о ско­ром появлении нового, невиданного никогда ранее источника энергии. 26 июня 1940 г. в газете «Известия» сообщалось в одной из статей: «В последнее время советскими и зарубежными физиками установлено, что деление ядер урана происходит толь­ко под действием медленных нейтро­нов. Это дает возможность регулиро­вать процесс деления атомов урана и тем самым использовать огромное количество внутриатомной энергии.

По приблизительным подсчетам одна весовая единица урана может дать в два с лишним миллиона раз больше энергии, чем такое же коли­чество угля. Уран, таким образом, становится драгоценным источником энергии...» А через полгода, 31 декабря 1940г., в той же газете «Известия» в статье «Уран-235» говорилось о новом ис­точнике энергии, в миллионы раз превосходящем все до того сущест­вовавшие. В этой статье рассказыва­лось: «При бомбардировке нейтро­нами ядер металла урана происходит необыкновенное явление: из каждо­го разбитого ядра вылетают новые нейтроны. Они попадают, в свою очередь, в ядра урана, расщепляют их и вновь рождают нейтроны. Про­цесс идет как лавина. Он идет сам... Тот уран... это разновидность урана, один из его изотопов. Секрет заклю­чается в том, что он почти ничем не отличается от вообще урана...

Выделить уран-235 из урана вооб­ще – вот цель, вот задача.

Физика стоит перед открытиями, значение которых неизмеримо».

Приведенные краткие выдержки из газетных статей и высказывания советских ученых подтверждают, что овладение ядерной энергией, ее высвобождение из недр атомов стано­вилось реальным уже к середине 1941 г. Но все упиралось в отсутствие отечественного урана и в необходи­мость огромных материальных за­трат для создания мощной, очень крупной и специализированной ядер­ной индустрии.

В конце 1940 г. И. В. Курчатов представил в Урановую комиссию доклад, в котором указывал на хозяй­ственное и военное значение про­блемы получения ядерной энергии при делении урана.

То, как оживленно в среде ученых проходили обсуждения проблем ядер­ной физики, хорошо показывает про­ведение регулярных конференций по ядерной физике, по атомному ядру с участием ведущих иностранных уче­ных. Первая такая конференция про­шла в сентябре 1933 г., вторая – в сентябре 1936 г., третья – в октябре 1938 г., четвертая – в 1939 г. и пятая была намечена на октябрь 1941 г., но помешала война.

Советские ученые были близки к освоению ядерной энергии, но война и первые месяцы пора­жений надолго остановили работы, связанные с освоением ядерной энер­гии в СССР. Практически все работы этого направления были заморожены, так как все силы наших физических, химических и других институтов были нацелены на нужды войны. Все силы народа были брошены на фронт, «все для фронта, все для победы».

Тем временем, в США, Англии и Германии работы, связанные с освоением ядерной энергии развивались в полную силу. Этому способствовала, как основная причина, ее военная привлекательность. Перспектива раньше всех создать оружие, устрашающее своей разрушительной мощью, побуждала правительства этих стран финансировать разработки в сфере ядерной физики.

Результатом этих усилий явился первый исследовательский атомный реактор, пущенный 2 декабря 1942 года в Соединенных Штатах под руководством итальянского ученого Энрико Ферми. Дальнейшие разработки в этом направлении привели к беспримерной по своей разрушительной силе атомной бомбардировке японских городов Хиросима и Нагасаки, ознаменовавшей начало ядерной эры.

Атомистика от послевоенных лет до наших дней.

Испытания, связанные с расщеплением атомного ядра, в Советском Союзе возобновились лишь в середине 1943 года, но уже в декабре 1946 г. в Москве на территории Инсти­тута атомной энергии (носящего сейчас имя его основателя И. В. Курча­това) был введен в действие первый в Европе и Азии исследовательский ядерный реактор. В августе 1949 г. было проведено испытание атомной бомбы, а в августе 1953 г. - водородной. Советские ученые овладели тай­нами ядерной энергии, лишив США монополии на ядерное оружие.

Но создавая ядерное оружие, советские специалисты думали и об использовании ядерной энергии в интересах народного хозяйства, промышлен­ности, науки, медицины и других областей человеческой деятельности. В декабре 1946 г. в СССР был пущен первый в Европе ядерный реактор. В июне 1954 г. вошла в строй первая в мире атомная электростанция в подмосковном городе Обнинске. В 1959 г. спущен на воду первый в мире атомный ледокол «Ленин». Таким образом, ядерная физика создала научную основу атомной тех­нике, а атомная техника в свою очередь явилась фундаментом ядерной энергетики, которая, опираясь на ядерную науку и технику, стала в на­стоящее время развитой отраслью электроэнергетического производства.

Уже в 1986 г. выработка электроэнергии на АЭС мира достигала 15% от общего количества энергии, производимой всеми электростанциями, а в ряде стран ее доля составила 30% (Швеция, Швейцария), 50% (Бельгия) и даже 65-70% (Франция). Достаточно успешно атомная энергетика развивалась и на территории бывшего Советского Союза: строились АЭС, наращивалась минерально-сырьевая урановая база.

Происшедшая в 1986 г. Чернобыльская авария помимо колоссального общего ущерба людям, народному хозяйству страны нанесла тяжелый удар по ядерной энергетике в целом и прежде всего по развивающейся в бывшем СССР, где стало формироваться общественное мнение о необходимости полного запрещения строительства новых и ликвидации действующих АЭС. Однако всесторонний анализ перспектив развития мировой энергетики однозначно показал, что реальных альтернатив у других видов энергии по отношению к атомной энергетике в обозримом будущем, по существу, нет – при обязательном условии, что проектирование и строительство АЭС осуществляется с многократным запасом прочности, с обеспечением их полной безопасности. Именно по такому пути развивается в настоящее время атомная энергетика в высокоразвитых странах – во Франции, Бельгии, в сейсмоактивной Японии, США и других. Уже в 1990 г. мощность АЭС во всем мире достигла около 327 млн кВт и возрастает, по данным МАГАТЭ, к 2005 г. до 447 млн кВт.

Заключение.

Итак, к концу XX века человечество в полной мере освоило использование запасов энергии атомных ядер урана-235. Этого вида топлива, сжигаемого в атомных котлах, не так уж много в земной коре. Если всю энергетику земного шара перевести на него, то при современных темпах роста потребления энергии урана, хватит лишь на 50–60 лет.

Безусловно существует возможность использования, в целях получения энергии, природного газа, угля и нефти. Но такой путь развития энергетики неприемлем. Причин множество: это и экологическая проблема – заражение окружающей среды токсичными химическими продуктами сгорания органического топлива, создание парникового эффекта, и постоянной возрастающей ценой на органическое топливо. В случае с нефтью и газом, можно сказать, что их использование в качестве источника энергии по меньшей мере неразумно.

Здесь возникает проблема: из какого материала и какими методами, в будущем человечество должно получать энергию? На сегодня существует несколько основных концепций решения проблемы:

1. Расширение сети станций на урановом топливе.

2. Переход к использованию в качестве ядерного топлива тория-232, который в природе более распространен, нежели уран.

3. Переход к атомным реакторам на быстрых нейтронах, воспроизводящих ядерное топливо, которое могло бы обеспечить воспроизводство ядерного топлива более, чем на 3000 лет, в настоящее время является сложной инженерной проблемой и несет в себе огромную экологическую опасность, в связи с чем испытывает серьезное противодействие со стороны мировой экологической общественности, по причине чего имеет низкую перспективу на внедрение

4. Освоение термоядерных реакций. В термоядерных реакциях происходит выделение энергии в процессе превращения водорода в гелий. Быстро протекающие термоядерные реакции осуществляются в водородных бомбах. Сейчас перед наукой стоит задача осуществления термоядерной реакции не в виде взрыва, а в форме управляемого, спокойно протекающего процесса. Решение этой задачи даст возможность использовать громадные запасы водорода на Земле в качестве ядерного топлива.

В настоящее время наиболее разумным представляется следующая схема развития энергетики: расширение сети урановых и уран-ториевых атомных станций в период решения проблемы управления термоядерной реакцией.

Список литературы:

1. В. Н. Михайлов, «Создание первой советской ядерной бомбы», Москва, ЭНЕРГОАТОМИЗДАТ, 1995

2. А. М. Петросянц, «Ядерная энергетика»,

3. В. Г. Язиков, Н. Н. Петров, «Урановые месторождения Казахстана», Алматы, «Гылым», 1995

Левкипп (ок. 500-440), как сообщает Диоген Лаэртский, происходил из Элей, согласно же другим сведениям - или из Абдер, или из Милета. Один из поздних сторонников атомистического учения, Эпикур, имя Левкиппа вообще не упоминает, а существование философа с таким именем отрицает вообще. Эта позиция дала начало возникновению так называемой Левкипповой проблемы, в основе которой было отрицание исторического существования Левкиппа. В конце концов возникла догадка, согласно которой имя Левкипп было псевдонимом молодого Демокрита. Однако исследования Дильса и Зеллера в прошлом столетии, а также советского историка Мековель-ского подтверждают его историческое существование. В высшей степени вероятно, что Левкипп родился в Милете. Как активный сторонник рабовладельческой демократии, он после успешного переворота, совершенного аристократией в 449 г. до н. э., был вынужден покинуть родной город. Левкипп отправляется в Элею, где, видимо, становится учеником Парменида или Ксенофана. Диоген Лаэртский сообщает, что он был также учеником Зенона.

Из его работ практически ничего не сохранилось, кроме нескольких мыслей, дошедших через посредство других античных авторов. Однако, согласно Г. Дильсу, ему можно приписать две книги как минимум. Это - «Великий диакосмос» и «Об уме» 90. После длительного пребывания в Элее он уходит в Абдеры, где, видимо, становится учителем Демокрита, а возможно, и Протагора.

Левкипп выдвинул основные принципы атомистической философии. Он «признавал бесчисленные, постоянно движущиеся элементы - атомы, имеющие бесконечное множество форм, так как видел в вещах постоянное возникновение и изменение». Он учил, что «сущее не более чем не-сущее и что оба они являются равной причиной возникновения вещей. Полагая суть атомов плотной и полной, он учил, что они есть сущее, движущееся в пустоте; пустоту называл несущим, утверждая, что она является не меньшим, чем сущее» . В этом фрагменте освещены принципы атомистической науки о бытии. Единственное, что существует,- атомы и пустота. Атомы, как увидим далее, характеризуются (и у Левкиппа, и у Демокри-та) величиной, формой, порядком и положением. Они являются причиной вещей, которые возникают и гибнут благодаря их соединению и разъединению. Левкипп в данном случае соединяет неизменное сущее элеатов с постоянной изменчивостью Гераклита.

Понятие атома выступает качественно новым элементом в античном материализме. Оно является следствием абстракции совсем другого, чем у ионических философов, направления - Эмпедокла или Анаксагора. При этом атомы характеризуются так же, как сущее в предшествующих философских направлениях, - полнотой. Однако Левкипп в отличие от упомянутых философов (возможно, первым в античной философии) допускает существование пустоты. Атомы, согласно его взглядам, движутся в пустоте.

Допущением существования пустоты, не-сущего, решается проблема, которая предшествующей философии доставляла значительные трудности, - проблема движения. Существование пустоты делает возможным движение атомов.

Сообщения античных авторов об учении Левкиппа в своем большинстве были тесно связаны со взглядами Демокрита. Так, например, большинство фрагментов 92 начинается словами: «Левкипп и Демокрит говорят...» Поэтому во многих случаях весьма сложно различить мысли Левкиппа и Демокрита. В принципе, однако, можно согласиться с утверждением, что Демокрит имел взгляды на сущность бытия, тождественные взглядам Левкиппа. Но в отличие от Левкиппа, который является автором основополагающей концепции, Демокрит развивает атомистическое учение в логически последовательную, всеобъемлющую систему.

Демокрит (ок. 460-370 до н. э.) происходит из знатного семейства в Абдерах. Унаследовал значительное имение, что и позволило ему полностью посвятить себя науке.

По преданиям, он учился у халдейских магов, которых оставил в Абдерах персидский царь Ксеркс.

Был учеником Левкиппа и, как сообщает Диоген Лаэртский, учился у Анаксагора, который, однако, был много старше.

Много путешествовал. Целью его странствий было знакомство с идеями мыслителей в далеких странах. Вне сомнения, он посетил Персию, Египет, Вавилон и области вокруг Красного моря. Во время путешествий он заметно углубил свое образование в естествознании, астрономии и особенно в математике.

Демокрит за свою долгую жизнь приобрел огромное количество знаний. Его труды представляют нечто вроде энциклопедии познания того времени. Диоген Лаэртский приводит более 70 названий его работ из области физики, этики, математики, музыки, риторики, астрономии и т. д.93 Широта, глубина, систематичность и цельность его трудов снискали ему уважение всех выдающихся мыслителей древности, таких, как Аристотель, Цицерон, Плутарх и т. д.

Атомизм Левкиппа и Демокрита органически связан с материалистическими элементами в учениях предшествующих философских школ, в частности милетской, школы Гераклита и Анаксагора. Демокрит, как уже говорилось, полностью разделяет учение Левкиппа об атомах и пустоте (термин атомос означает в дальнейшем неделимый). К характеристикам атомов Демокрит добавляет еще величину, которая была у Левкиппа допустима как различие форм атомов, и тяжесть. Тяжесть, однако, как говорил об этом К. Маркс в своей докторской диссертации, он не считал существенным свойством атомов, но признавал её простым следствием того факта, что они имеют некий размер. Подобным образом и величина не дает качественной характеристики атомов.

Атомы сами по себе неизменны, были, есть и будут постоянно теми же самыми, ибо «не могут претерпевать те изменения, в существовании которых убеждены все люди, научаемые этому восприятием. Так, говорят, что ни один атом не нагревается и не охлаждается и потому не высыхает и не увлажняется и тем более не становится белым или черным и вообще не принимает каких-либо свойств, так как он никоим образом не меняется»94. Концепция атомизма содержит, таким образом, представление о неуничтожимо-сти и несотворимости материи. Эту материалистическую мысль Демокрита подтверждают и сообщения других авторов, например Псевдо-Плутарха: «Демокрит Абдерский полагал вселенную бесконечной, никем не сотворенной. Он говорил также, что она неизменна и вообще причины того, что ныне совершается, не имеют никакого начала. Издавна, от вечности все наполнено определяющей необходимостью, все, что было, есть и будет»95. Демокритово материалистическое понимание возникновения и развития мира выливается в этом смысле в атеизм.

Точную характеристику основных принципов учения Демокрита о сущности мира мы находим у Диогена Лаэртского: «Начала вселенной суть атомы и пустота, все остальное лишь считается существующим. Миры бесконечны и подвержены возникновению и разрушению. Ничто не возникает из несуществующего, и ничто не разрушается в несуществующее. Атомы тоже бесконечны по величине и количеству, они вихрем несутся во вселенной и этим порождают все сложное - огонь, воду, воздух, землю, ибо все они суть соединения каких-то атомов, которые не подвержены воздействиям и неизменны в силу своей твердости» 96. Атомы, по Демокриту, суть бесконечны, только если речь идет об их величине и числе. Так же бесконечны они и относительно различия форм: «Число форм у атомов бесконечно потому, что скорее нет ничего такого, чем не такого» 97. Речь идет здесь о выраженной в духе того времени мысли о бесконечности материи. Материя, по Демокриту, бесконечна. Атомистический материализм, таким образом, представляет дальнейшую и более глубокую ступень в «поисках» первопричин развития мира.

Качественно новым в античном мышлении является Демокритово понимание бесконечности, неуничтожимости и несотворенности вселенной, убежденность в существовании бесконечного множества миров, которые возникают и гибнут. «Демокрит говорил, что миры неисчислимы и что они отличаются размерами. В некоторых (из них) нет солнца и луны, в некоторых они больше, чем у нас, а в некоторых мирах они более многочисленны. Расстояния между мирами не одинаковы, где-то миров больше, где-то меньше, некоторые растут, другие пребывают в расцвете, а иные гибнут, где-то возникают, а где-то приходят в упадок» 98. Из этого следует, что нет существенной разницы между миром, в котором мы живем, и другими мирами. Мир, в котором мы живем, отличается от других (бесчисленных) миров лишь тем, что «пребывает в расцвете».

Демокрит совершенно новым способом решает вопрос об отношении материи и движения. У милетских философов этот вопрос еще даже не возникал, у элеатов проблема движения становится одной из основных. Однако возможность движения у элеатов находится в противоречии с основной характеристикой полного и непроницаемого сущего.

Левкипп в отличие от большинства других античных философов допускает существование «не-сущего», т. е. пустоты, которая является гарантией возможности движения.

Движение присуще атомам в естественном состоянии. «Демокрит... считает, что атомы, как он их называет, т. е. неделимые, из-за плотности тела движутся в бесконечной пустоте, в которой нет ничего ни ввер ху, ни внизу, ни посредине, ни внутри, ни вне. При этом они сталкиваются друг с другом, благодаря этому они соединяются, и из этого возникает все то, что есть и что мы видим. А об этом движении атомов следует судить, что оно не имело начала, но что оно извечно». Движение, таким образом, присуще атомам и передается столкновением, и движение в этом понимании является основным источником развития.

Следует сказать, что у Демокрита (как и у других атомистов) речь идет о движении чисто механическом. Демокрит полагал, что первичное движение никогда не было сообщено атомам, оно, говоря современным языком, является основным способом их существования. Таким образом, Демокрит преодолевает проблему дуализма материи и движения, которая возникала не только в предшествующей, но и в позднейшей философии. Все последующие интерпретации концепции движения Демокрита, в которых возникает вопрос, откуда взялось движение у «первого» атома, если атомы получают движение «один от другого», следует поэтому решительно отвергнуть. Эта интерпретация, как правило, зиждется на толковании Сим-пликием «Физики» Аристотеля, где говорится, что, согласно Демокриту, атомы от природы суть неподвижны и что движутся они от удара. Смыслом этой интерпретации, отстаиваемой впоследствии христианскими мыслителями, является попытка ослабить четкий материализм Демокрита, ввести в его теорию «первый двигатель».

Понимание мира у Демокрита тесно связано с основными принципами его учения о бытии и его пониманием отношений между явлениями. Здесь Демокрит был сторонником строгой необходимости. Развитие вселенной, порядок мира, все в сущности определено (детерминировано) механическим движением атомов, Поэтому в его системе нет места для объективного существования «случайности». И сама «случайность» объясняется отсутствием каузального объяснения, не-,знанием причин определенного явления. У Демокрита, как говорит Диоген Лаэртский, «все возникает по необходимости: причина всякого возникновения - вихрь, и этот вихрь он называет необходимостью». Это понятие необходимости есть следствие определенной метафизической абсолютизации механически понимаемой причинности. (Именно этот момент был главным предметом критики одного из выдающихся представителей древней атомистики - Эпикура.)

Демокритово понимание причинности как абсолютной необходимости не имеет, однако, как подчеркивал Аристотель, ничего общего с телеологией и направлено именно против телеологической интерпретации действительности. «Демокрит отходит от того, чтобы говорить о цели, и переводит все, что использует природа, к необходимости» 102. То, что Демокрит исключал случайность из мира, подтверждал и Симпликий при интерпретации «Физики» Аристотеля: «Слова «как старое истолкование, отрицающее случайность», видимо, направлены против Демокрита, ибо он при объяснении сотворения мира хоть и употребляет случайность, но при объяснении частностей говорит, что случайность не является причиной чего-либо, и переводит все на другие причины»103. Подобным образом подтверждает отрицание Демокритом случайности и сообщение Стобея, согласно которому Демокрит сказал, что «люди сами создали образ случайности, чтобы скрыть собственную нерасторопность» 104. Демокрит, видимо, считал причинно-следственное изложение явлений одной из главных целей всякого познания. Он говорил, что «лучше было бы найти одно причинное объяснение, чем получить Персидское царство» 105.

И хотя большинство-сведений о философии Демокрита (и Левкиппа), которые до нас дошли, однозначно подчеркивают абсолютизацию необходимости в понимании причинности, у античных авторов можно найти и такие данные, согласно которым Демокрит не только допускает существование случайности, но и отводит ей важное место. Такое положение, видимо, вытекало из стремления обосновать теорию естественного движения и развития мира, которым не управляют внешние силы. Однако упор на значение случайности в определении движения мира был бы в прямом противоречии со всей атомистической концепцией. Демокрит, как мы уже видели, признает механическое движение как единственную форму движения, а это исключает объективное существование случайности. Наконец, и его понятие причинности имеет механистическую суть. Случайность как форма проявления объективного существования причинно-следственных отношений вообще не могла возникнуть в атомистической системе Демокрита.

Специфическую проблематику представляет реконструкция воззрений Демокрита по вопросу о познании. Значительные трудности вызывает тот факт, что сведения, которые дошли до нас, иногда противоречат друг другу. Одно ясно, что Демокрит отбрасывает негативное отношение к чувственному познанию, как это было у элеатов. Он полностью согласен с Лев-киппом, который «полагал, что доводы в согласии с восприятием не отвергнут ни возникновение, ни гибель, ни движение, ни многообразие сущего» 106. Аристотель эти взгляды характеризует однозначно: «Демокрит и Левкипп полагали, что истинно суть то, что нам является» 107.

О значении, которое Демокрит придавал чувственному познанию, свидетельствует и его концепция так называемых эйдолов, или образов. Эйдолы возникают где-то между объективной вещью и соответствующим органом чувств субъекта восприятия. Предмет выделяет из себя в воздух нечто, подобие предмета, которое в свою очередь втискивается во влажную часть глаза. Собственно, образ предмета возникает где-то в пространстве между предметом и глазом и, как оттиск, попадает в соответствующий орган чувств.

Эта концепция находится в полном соответствии с материалистическими воззрениями Демокрита на сущность бытия. Материалистический подход к объяснению сути восприятия у древнегреческих атомистов подтверждает фрагмент из Аэция, согласно которому Левкипп и Демокрит учат, что чувства и мысли суть изменения тела.

Из того, что мы до сих пор говорили об атомистической теории познания, однозначно вытекает, что Левкипп и Демокрит придавали чувственному познанию основную и незаменимую роль, видя в нем первую и основную предпосылку всякого дальнейшего познания. «Левкипп, Демокрит... учат, что чувства и мышление возникают из образов, приходящих извне, ибо ни у кого нет чувства либо мысли без образа, в них входящего» 108. (Эта мысль заметно напоминает один из основных принципов сенсуализма Нового времени о том, что в разуме нет ничего такого, чего бы до этого не было в чувствах.) Ссылаясь на Эмпедокла, атомисты отстаивали принцип «подобное познается подобным». В этом случае лучше всего можно познать то, что наиболее подобно познающему субъекту.

Значение, которое придает атомистическая гносеология чувственному познанию, не мешало, однако, Демокриту раскрыть значение и функции рационального познания. Об этом свидетельствует отрывок из Секста Эмпирика: «В «Правилах» он говорит о двух видах знания, об одном - при помощи чувственных восприятий и о другом - при помощи рассуждения. Из них знание при помощи рассуждения он называет подлинным, приписывая ему достоверность для суждения об истине, а знание при помощи чувственных восприятий он именует темным, лишая его постоянства в отношении распознавания истинного. Он говорит: «Существуют две формы познания, подлинная и темная. К темной относится следующее целиком: зрение, слух, обоняние, вкус, осязание. Подлинная же отлична от неё» 109. Из этого фрагмента следует, что Демокрит понимает процесс познания состоящим из ступеней. Чувственное познание является некоей низшей ступенью познания и знакомит нас с окружающим миром явлений. Подойти, однако, к познанию «истинной сущности» (познанию атомов), открытию причин истинного познания (открытию причинно-следственной связи) можно лишь при помощи «подлинного», т. е. рационального, познания. Чувства не могут, согласно Демокриту, дать подлинного знания (познания сущности и причинных взаимосвязей). Демокрит это аргументирует тем, что «природа не имеет чувствующего начала, так что атомы, образующие все своим соединением, имеют чувственность просто через все» "°. Чувствами можно воспринимать лишь то, что образовалось путем соединения атомов, что само по себе лишь преходяще.

Роль, которую Демокрит в теории познания отводит разуму, не противоречит его целостной материалистической ориентации. И мышление, так же как и чувственное восприятие, он понимает вполне материалистически. Эту интерпретацию подтверждает и Демо-критово понимание души, частью которой, согласно его представлениям, является разум. «Демокрит учит, что душа - это огненное соединение постигаемых разумом частиц, имеющих шаровидную форму и огненную силу и являющихся также телом» ", Душа, таким образом, является совокупностью наилегчайших атомов, имеющих идеальную, т. е. шаровидную, форму. Ее материальный характер не вызывает никаких сомнений. Материальность души подтверждает и сохранившийся фрагмент, согласно которому «Демокрит и Эпикур учат, что душа смертна, ибо погибает вместе с телом».

Последовательный материализм в понимании природы и мира привел Демокрита, как уже говорилось, к атеизму. В этой области он близок к древней атеистической традиции греческой философии. «Разумом выдумали люди божественные дела» . В соответствии со своим учйшем он дает материалистическое объяснение возникновения богов: «Некоторые полагают, что мы пришли к мысли о богах под влиянием удивительных вещей во вселенной; того же мнения, кажется, придерживается и Демокрит. Ибо, говорит (он), древние люди, видя неземные явления, как гром, молнию, зарницы, сближения звезд и затмение луны, боялись и полагали, что боги суть причины этих вещей».

Материализм Демокрита не только исходил из древней традиции греческого философского мышления, но и был тесно связан с развитием научного познания и общественной практики.

Демокрит, так же как большинство великих мыслителей того времени, занимался математикой, физикой, астрономией, риторикой и этикой. Среди его математических трудов Диоген Лаэртский называет следующие: «О геометрии», «Числа», «Об иррациональных линиях и телах». Можно предположить, что Демокрит во время своего учения в Афинах познакомился с математическими идеями Пифагора. Однако его философская и политическая ориентация представляла полную противоположность пифагореизму.

По названиям математических трудов Демокрита можно судить о том, что в области математической абстракции он достиг высокого уровня. Не случайно и то, что атомы характеризовались им свойствами, которые как раз в это время интенсивно исследовались геометрией. Труды Демокрита являются очередным подтверждением тесной связи философского материализма с античной наукой.

Взгляды Демокрита на общество тесно связаны с его политической ориентацией. Он был решительным сторонником греческой рабовладельческой демократии, приобретшей, в частности, в Афинах свои классические формы. Для правящего класса главным врагом была уже не «родовая аристократия», но прежде всего рабы и эксплуатируемый демос. Раб в античности не считался человеком. Поэтому победившая рабовладельческая демократия и провозглашает свои принципы и ценности «общечеловеческими». Все это полностью отражается во взглядах Демокрита на общество, политику и мораль.

Прежде всего он стремится «естественным» образом объяснить возникновение общества. Согласно этому объяснению, люди в начальных стадиях своего развития «жили неупорядоченной и животной жизнью... рассредоточенно ходили на пашу и собирали наиболее подходящие травы и плоды дикорастущих деревьев. А когда на них нападали звери, объединялись, помогали друг другу. Зимой прятались в пещеры и складывали здесь те плоды, которые могли храниться. А затем познали огонь и другие вещи, было также изобретено искусство и все, что может быть полезным в совместной жизни. Ибо вообще потребность стала людям учительницей всего».

Таким образом, Демокрит считает основным стимулом развития общества примитивный способ удовлетворения потребностей. И хотя он в свое время не мог понять роль способа производства как средства удовлетворения материальных потребностей, представляется, что он угадал роль и значение естественных потребностей человека в процессе возникновения общества, и тем самым его взгляды в данном вопросе являются определенным завершением попыток естественного (материалистического) объяснения этой проблемы.

В своих политических взглядах Демокрит является типичным представителем своего класса. Насколько можно судить по сохранившимся фрагментам, его взгляды в этой области являются смесью индивидуализма и стремления поддержать авторитет древнегреческого полиса как основной формы государства греческой рабовладельческой демократии. Поэтому некоторые мысли взаимно противоречивы. С одной стороны, «закону, чиновнику и старшему надлежит уступать»116, а с другой - «мудрец не должен слушаться закона, но жить свободно». Вторая мысль выдает четкий индивидуализм Демокрита, который проявляется в понимании общества как совокупности индивидов. Они объединяются на основе принципа, напоминающего теорию «общественного договора». В этом смысле Демокрит подчиняет индивида обществу. Это подчинение само по себе тоже противоречиво. Общество и законы, согласно Демокриту, не являются инструментами развития индивидуальности, но скорее лишь ограничивающими средствами, предотвращающими возникновение вражды. «Законы не запрещали бы каждому жить по своему вкусу, если бы каждый не вредил один другому, ибо зависть способствует началу вражды» . Здесь проявляется взаимосвязь социальных и этических взглядов Демокрита. Естественно, что он не мог в свое время понять принципы действительного устройства общества. Поэтому ценности и воззрения своего собственного класса он считает универсальными. «Верность» рабовладельческой демократии ему представлялась одним из наивысших как политических, так и этических принципов. «Бедность при народовластии настолько пред-почтима благосостоянию при властителях, насколько предпочтима свобода рабству» 119.

Подобной же точкой зрения руководствуется Демокрит и в отношении к собственности, к имению. Он не осуждает накопления, приобретения собственности, имений, но осуждает лишь такое приобретение дурными способами: «Приобретать деньги не есть бесполезное, однако приобретать их несправедливо - хуже всего... дурные прибыли приносят гибель добродетели» 120.

Этика Демокрита тесно связана с его социальными и политическими взглядами. Она исходит также из индивидуалистических принципов. Он пытается сформулировать некие «универсальные» моральные правила. Центральным в его этике является «достижение доброй мысли». Путь к этому - через жизненную уравновешенность и умеренность: «Кто хочет обладать доброй мыслью, не смеет многое совершать ни в частной, ни в общественной жизни» 121. Добрая (благая) мысль является, согласно законам, ключом к справедливой жизни: «Человек добродетельной (благочестивой) мысли стремится к справедливым и законным действиям, во бдении и во сне весел, здрав и спокоен» 122. Главным средством достижения добродетели Демокрит считает убеждение, воспитание в духе нравственности. «Принуждением» человека нельзя сделать добрым. «Лучшим подстрекателем к добродетели окажется тот, кто употребляет возбуждающую и убеждающую речь, чем тот, кто прибегает к закону и насилию. Ибо правдоподобно, что тот, кто отвращен от беззакония законом, грешит втайне, а тот, кто был приведен к повинности убеждением, не совершает ничего недостойного ни тайно, ни явно. Поэтому тот, кто действует правильно по пониманию и сознательно, становится достойным и прямодушным» 123. Мерилом нравственности должен быть сам человек, и в этом смысле можно говорить об атеистических моральных взглядах Демокрита.

Воззрения Демокрита на общество и его этические взгляды представляют собой не только определенное «обобщение» его личного опыта, но в то же время и выражение обобщенного социального опыта его класса. Во многом в этих его представлениях заметна проекция его атомистической концепции мира. Поэтому их иногда определяют как «социальный атомизм».

Демокрит имел несколько учеников и последователей. Однако в своем большинстве (как можно судить по сохранившимся фрагментам) они по сути лишь распространяли взгляды Левкиппа и Демокрита и защищали их в борьбе с другими философскими системами.

Философия Демокрита представляет наиболее завершенный материалистический способ мышления в Древней Греции. Значение учения Демокрита для развития античного материализма было так велико, что В. И. Ленин называл всю материалистическую линию в греческой философии «линией Демокрита». Материализм Демокрита был камнем преткновения для всех позднейших представителей идеализма. Уже Платон, как сообщает Диоген Лаэртский, «хотел сжечь все сочинения Демокрита, какие только мог собрать» 124. Диоген Лаэртский приводит еще один убедительный аргумент о неприятии идеалистом Платоном материалиста Демокрита: «...ведь Платон, упоминая почти всех древних философов, Демокрита не упоминает нигде, даже там, где надо было бы возражать ему; ясно, что он понимал: спорить ему предстояло с лучшим из философов» .

Отрицательный подход одного из выдающихся представителей идеализма античности, равно как и полупрезрительное отношение наиболее выдающегося представителя идеализма Нового времени - Г.-В.-Ф. Гегеля, самым наилучшим образом свидетельствует о воинственности материализма Демокрита и Левкиппа.

Демокрит (ок. 460-370 до Р.Х.) - древнегреческий философ, родом из Абдер. Он много путешествовал, побывал в Египте, Персии, Индии и приобрел значительное количество знаний. За свою долгую жизнь сделался многогранным ученым и написал свыше 70 работ по самым различным областям знания - физике, математике, риторике, философии. Он был учеником Левкиппа, и основные положения атомистической теории заимствовал у него, но развил их дальше. Следуя за Левкиппом, Демокрит утверждает, что все существующее состоит из атомов и пустоты. Атомы - это неделимые частицы. Атомы соединяются между собой и образуются вещи. Они различаются между собой формой, порядком и поворотом. Атомы едины, неделимы, неизменны и неуничтожимы. Кроме них существует еще пустота, так как без пустоты не было бы возможности перемещения, а также уплотнения и сгущения. Пустота по своему характеру однородна, она может отделять тела между собой, а может находиться и внутри самих тел и отделять отдельные часть этих тел. Атомы же не содержат пустоты, они отличаются абсолютной плотностью.

По мнению Демокрита, в мире существует бесконечное множество атомов. Также бесконечно и число форм атомов. Одновременно Демокрит признает вечность мира во времени и бесконечность его в пространстве. Он был убежден, что существует множество миров, постоянно возникающих и погибающих.

Атомы обладают свойством движения от природы, и передается оно посредством столкновения атомов. Движение выступает основным источником развития. Демокрит считает, что первичного движения, первого толчка никогда не было, так как движение - способ существования атомов.

Он полагал, вслед за Левкиппом, что не только ничего не возникает из ничего, как это считали предшествующие философы, но и что ничего не возникает без причины. Все происходит по строгой необходимости. Все детерминировано механическим движением атомов. Как пишет Диоген Лаэртский, у Демокрита «все детерминировано: причина всякого возникновения - вихрь, и этот вихрь он называет необходимостью». Для Демокрита не существует случайности, все имеет свою причину, а это значит, что оно не может быть случайным. Даже такое явление, как пересечение двух независимых рядов событий, порождающих случайное совпадение, Демокрит называет необходимым, так как и здесь к этому событию привела причинная цепь явлений. Таким образом, Демокрит стоит на позициях жесткого детерминизма, вытекающего из его признания механического движения единственной формой движения Виц Б.Б. Демокрит.

С формой и величиной атомов связан вопрос о так называемых амерах, или «математическом атомизме Демокрита». Демокритовская математика отличалась от общепринятой. Согласно Аристотелю, она «расшатывала математику». Она основывалась на анатомических понятиях. Соглашаясь с Зеноном, что делимость пространства до бесконечности ведет к абсурду, к превращению в нулевые величины, из которых ничего не может быть построено, Демокрит открыл свои неделимые атомы. Но физический атом не совпадал с математической точкой. По Демокриту, атомы имели разные размеры и формы, фигуры, одни были больше, другие меньше. Он допускал, что есть атомы крючкообразные, якоревидные, шероховатые, угловатые, изогнутые - иначе бы не сцеплялись бы друг с другом. Демокрит считал, что атомы неделимы физически, но мысленно в них можно выделить части - точки, которые нельзя отторгнуть, они не имеют своего веса, но они тоже являются протяженными. Это не нулевая, а минимальная величина, дальше неделимая, мысленная часть атома - «амера». Согласно некоторым свидетельствам, в самом мелком атоме было семь амер: верх, низ, левое, правое, переднее, заднее, середина. Это была математика, согласная с данными чувственного восприятия, которые говорили, что, как бы мало ни было физическое тело - например, невидимый атом, - такие части в нем всегда можно вообразить, делить же до бесконечности даже мысленно невозможно.

Из протяженных точек Демокрит составлял протяженные линии, из них - плоскости. Конус, например, по Демокриту, состоит из тончайших чувственно не воспринимаемых из-за своей тонкости кружев, параллельных основанию. Так, путем складывания линий, сопровождающегося доказательством, Демокрит открыл теорему об объеме конуса, который равен трети объема цилиндра с тем же основанием и равной высотой, так же он высчитал объем пирамиды. Оба открытия признал Архимед Основы философии.

Авторы, сообщающие о взглядах Демокрита, мало понимали его математику. Аристотель и последующие математики ее резко отвергли, поэтому она была забыта. Некоторые современные исследователи отрицают различие атомов и амер у Демокрита или полагают, что Демокрит считал атомы неделимыми и физически и теоретически, но последняя точка зрения ведет к большим противоречиям. Атомистическая теория математики существовала, она возродилась в школе Эпикура.

Атомы бесконечны в числе, число конфигураций атомов так же бесконечно. Этот принцип «не более так, чем иначе», который иногда называется принципом индифферентности или разновероятности, характерен для демокритовского объяснения Вселенной. С его помощью можно было обосновать бесконечность движения пространства и времени. По Демокриту, существование бесчисленных атомных форм обусловливает бесконечное разнообразие направлений и скорости первичных движений атомов, а это в свою очередь приводит их к встречам и столкновениям. Таким образом, все мирообразование детерминировано и является естественным следствием вечного движения материи.

О вечном движении говорили уже ионийские философы. Мир находится в вечном движении, ибо он в их понимании - живое существо. Иначе решает этот вопрос Демокрит. Его атомы не одушевлены. Вечное движение это сталкивание, отталкивание, сцепление, разъединение, перемещение и падение атомов, вызванное первоначальным вихрем. У атомов имеется свое первичное движение, не вызванное толчками: «трястись во всех направлениях» или «вибрировать». Последнее понятие не было развито, его не заметил Эпикур, когда корректировал демокритовскую теорию движения атомов, введя произвольное отклонение атомов от прямой.

Движение Демокрит считал вечным естественным состоянием Космоса. При этом движение истолковывалось строго однозначно как механическое перемещение атомов в пустоте.

Итак, суть учения Демокрита сводилась к двум основным положениям:

  • 1) Атомы вечно движется в окружающей их пустоте. По отношению к атому место, занимаемое им, совершенно случайно.
  • 2) Все вещи образуются из сочетания атомов: все многообразие мира проистекает из их соединения и разделения. Атомы, которые находятся в постоянном движении, соединяясь, образуют вещи. Когда атомы разъединяются, вещи гибнут.

В своей картине строения материи Демокрит исходил из принципа, выдвинутого предшествующей философией - принципа сохранения бытия «ни что не возникает из нечего». Он связывал его с вечностью времени и движения, что означало определенное понимание единства материи (атомов) и форм ее существования. И если элейцы считали, что этот принцип относится только к «истинно сущему», то Демокрит относил его к реальному, объективно существующему миру, природе Виц Б.Б. Демокрит. Атомистическая картина мира не сложная, но она грандиозна. Учение об атомном строении было самым научным по своим принципам и самым убедительным из всех, созданных философами ранее. Оно отметало решительным образом массу религиозно-мифологических представлений о надприродном мире, о вмешательстве богов. Кроме того, картина движения атомов в мировой пустоте, их столкновения и сцепления - это простейшая модель причинного взаимодействия. Демокритовская картина мира - это уже ярко выраженный материализм, такое философское миропонимание было в условиях древности максимально противоположно мифологическому миропониманию.

Демокрит придавал большое значение чувственному познанию. Он выдвинул теорию истечения для объяснения восприятия внешних предметов органами чувств. По этой теории из предметов истекают так называемые образы, подобия этих предметов. Когда они попадают в глаз, то появляются представления о предмете. Чувственное познание, по мнению Демокрита, не является достоверным познанием. Познание при помощи чувств он называет «темным», оно не истинно. Подлинной формой познания выступает лишь познание при помощи рассуждений.

Объясняя психическую деятельность человека, Демокрит пишет, что душа - это движущее начало и орган ощущения и мышления. Для того, чтобы производить в движение тело, душа сама должна быть материальной и движущейся. Она состоит из атомов, поэтому она смертна, так как после смерти человека атомы души тоже рассеиваются.

Демокрит придерживался атеистических воззрений, о чем свидетельствует Платон. Он полагал, что люди пришли к вере в богов под влиянием существования грозных явлений природы: грома, молнии, солнечных и лунных затмений.

По своим политическим взглядам Демокрит был горячим защитником греческой демократии, выступавшей против аристократии за рабовладельческую форму правления. Он писал: «Бедность в демократии настолько же предпочтительнее так называемого благополучия граждан при царях, насколько свобода лучше рабства». В этике Демокрит исходит из индивидуалистического принципа. Для него главное - это «достижение доброй мысли». «Человек добродетельной (благочестивой) мысли стремится к справедливым и законным действиям, во бдении и во сне весел, здрав и спокоен». Основным средством этического воспитания Демокрит считал убеждение.

«Лучшим стимулятором окажется тот, кто употребляет возбуждающую и убеждающую речь, чем тот, кто прибегает к закону и насилию» Виц Б.Б. Демокрит.

Философия Демокрита сыграла огромную роль для всей последующей философии.


2. Простейшая логическая модель - атомизм.
Противоречия атомистического редукционизма. Демокрит

Логическая философия элейцев выставила жесткие требования к познанию: бытие и небытие - простейшие категории, завоеванные мыслью, простейшие определения, которыми она вправе оперировать. Элейская философия очистила логику как науку о таких определениях от посторонних примесей. В учении о субстанции как о «пребывающем», неуничтожимой и несотворимой основе вещей, развитом другими философскими школами, ничего и не содержалось, кроме категории бытия . Имплицитно в это понятие вкладывалось еще и представление о чувственно-материальной природе этой субстанции. Однако разработка этих представлений до уровня категории материи предполагает развитую гносеологию, которую ранняя греческая философия не знала. Оставаясь философией природы и натуральной логикой, она реализовала представление о субстанции только как о «пребывающем», о бытии. В своих попытках выразить в мысли жизнь человека и космоса философия вправе оперировать только этой категорией и понятиями, производными от нее. Другие пути для монистической мысли заказаны.

Определение вещи есть ограничение, есть отрицание. Если же сущностью вещи является «пребывающее», бытие, то определенное бытие мы получаем посредством его ограничения, отрицания небытием. Поскольку и милетская философия, и элеаты не знали более развитых определений субстанции, постольку операция определения бытия необходимо превращалась в операцию его отрицания, в уничтожение пребывающей основы вещей в угоду конечно-определенной форме. Следовательно, мыслить мир определенным – значит мыслить его несуществующим. Если же он мыслится сущим и единым, то различие и определенность есть нечто несуществующее, недействительное для мысли. Признать многообразие, оставаясь на почве единства, наука вправе только тогда, когда найдет разрешение этой антиномии. Таковы условия проблемы: hic Rhodus, hic salta!

Этот прыжок через логическую пропасть, вырытую элеатами, совершает философия Демокрита.

Атомистическая философия Демокрита представляет собой первый опыт построения теоретической, рационально-монистической, а не художественной конструкции мира. Атомизм - первый опыт построения логически обоснованной модели природы.

Исходный материал - бытие и небытие, простейшие допустимые в данных исторических рамках определения вещей (резюмирующие предшествующее развитие материалистической философии). Посмотрим, достаточно ли этих категорий для осуществления принципа материалистического монизма, выражающего движение мысли по логике предмета. (Не будем при этом забывать, что вся древняя философия все-таки логика, именно логика, а не физика.)

Демокрит вкладывает в свои атомы весьма абстрактное, не столько физическое, сколько именно логическое содержание. Он выводит, дедуцирует физику из логики. Его физика есть интерпретация логики.

Задача Демокрита - воспроизвести теоретически, т.е. придерживаясь исходных абстракций, картину сложнорасчлененного, многообразно определенного мира.

Определенным бытие может быть постольку, поскольку оно берется на фоне небытия, поскольку это небытие существует и определенность бытия фиксируется его границей с небытием, его отрицанием. Эта граница может быть только внешней, так как, будучи внутренней границей бытия, она попросту упразднила бы его. Ведь имманентное тождество бытия и небытия, внутреннее отрицание возможно лишь при условии его определенного характера , что в свою очередь предполагает более богатое, более развернутое определение самого бытия . Внутренняя граница не может быть проведена, так как отсутствует общая основа для противоположных определений бытия и небытия, в которой и была бы проведена их граница. Но других определений греческая философия еще не знает. Остается внешняя граница, но и она предполагает некую общую основу. Этой внешней основой, выражающей условия построения логической модели мира, служит у Демокрита пространство .

Определённость бытия есть его отграниченность от небытия в пространстве. На почве этой категории бытие интерпретируется уже как «полное», а небытие как «пустое». Определенность бытия есть его пространственная граница в пустоте, т.е. фигура, положение, размер и т.п. - все определения атома.

Вариации определенностей атомов и, следовательно, вещей суть пространственные вариации. Вещи - это лишь ассоциации атомов, определенные пространственные конфигурации . В этом направлении мысль Демокрита последовательно монистична: все другие определения вещей недействительны, логически несостоятельны , неправомерны, недопустимы. Они - продукт заблуждения, формы движения «темного познания». Ведь по истине «существуют лишь атомы и пустота» (Демокрит).

Формы вещей, известные из опыта, становятся познанными, будучи редуцированы к атомам и их комбинации. Всякое изменение выражает лишь движение атомов - их ассоциацию или диссоциацию. С точки зрения этого редукционизма всякий предмет познания, взятый «по истине», есть вещь или тело, построенное из элементарных тел. Всякая определенность должна быть сведена к атомным сочетаниям, к их конфигурации. Вещественно-телесное понимание мира со времен Демокрита на долгое время становится главным принципом материалистической философии и науки. Таким образом, определенные, различающиеся вещи существуют. В этом отличие атомизма Демокрита от элейской концепции сущего. Поэтому конечные, определенные вещи не просто продукт заблуждения, «мнения».

Однако Демокритово «существование» как бы двойственно: существенным определением вещи является лишь ее атомный субстрат, несущественна ее собственная индивидуальная форма. Или иначе: существенна лишь индивидуальная форма атома, эта целостная сущность неделима. Несущественна же собственная форма вещи, которая делима. Эта собственная форма вещи и есть несущественное существование, т.е. явление. Несущественная, являющаяся сторона бытия представлена вещью как целостным качеством, существенная - ее атомарным составом.

Если мы рассматриваем макровещь как нечто неделимое, целостное, т.е. как сущность, то мы оказываемся в плену у заблуждения, «мнения», так как неделимая сущность для всех вещей одна - атом. Если же мы рассматриваем эту вещь как нечто делимое, то она - явление. Она существует, но лишь как явление.

Атомизм - серьезное завоевание античной материалистической философской мысли. Плодотворность атомистической концепции прекрасно подтверждается всем последующим развитием науки, в особенности механики и физики. Вместе с тем весьма показателен тот факт, что атомизм все-таки не завоевал прочных позиций в самой философии, превратившись с течением времени в естественно-научную концепцию. Это говорит о том, что в самом фундаменте атомизма содержатся ограничения, препятствующие превращению его в универсальный метод мышления. Эти ограничения были обнаружены в философии уже Платоном и Аристотелем. Ограниченности атомистической концепции были использованы идеализмом против материализма. Идеалистическая философия уже в рамках античности поставила перед материализмом проблемы, решение которых отодвинулось на многие столетия, вплоть до эпохи диалектического материализма. В чем же состоит эта ограниченность атомизма? Прежде всего, конечно, не в том, что атомизм сводит сложные формы движения к простым - к механическому взаимодействию и перемещению атомов. Механицизм - лишь следствие его логики. Поэтому именно в логике следует искать внутреннюю ограниченность этой концепции. Можно найти более сложные способы взаимодействия элементарных частиц, можно опровергнуть самое представление о неделимости атома, можно, наконец, показать взаимопревращаемость частиц, их внутреннюю противоречивость и т.п., и все же в результате мы будем иметь опять-таки только механику, хотя бы и квантовую, а не философию.

Корпускулярная концепция не дает нам в руки универсального метода монистической философской мысли. Суть дела, в том, что в конечном счете всякий объект представляет собой некую совокупность элементарных частиц. Не только «весь Гомер состоит из 24 букв», но и мы сами - лишь «электродинамическая ассоциация частиц». Но весь вопрос в том, достаточно ли такое представление для выражения сущности объекта, для раскрытия его определенности? Коренной порок атомизма в том, что он признает для всех предметов и событий лишь одну неделимую сущность - атом, поэтому он необходимо механистичен, метафизичен. Поэтому же, будучи редукционизмом, он исполнен глубоких внутренних противоречий, ослабляющих его материалистическую позицию.

Логическую проблему единства и множественности сущего Демокрит все же не разрешил. И единство, и множественность у него предполагаются данными с самого начала. Его интересует не дедукция этих категорий , этих логических определений, а дедукция вещей с помощью этих логических категорий. Самое единство у него множественно . Единое бытие лишено внутренних различий, поэтому неделимое - сущность, атом - у Демокрита представлено во множестве экземпляров. Множественность есть экземплярность. В определении самого единого как сущности, как категории Демокрит фактически не сделал большого шага вперед в сравнении с элеатами. Поставленную ими проблему он попытался решить на ином пути: представив «единое бытие» элеатов размноженным. Атомы не различаются между собой по сущности, они различаются как существования, как явления. Но единое элеатов предполагало единственность бытия; отрицание единственности у них было эквивалентно признанию небытия, в сферу которого только и может падать различие. Демокрит признает это небытие, но не в качестве внутренней границы бытия, его логического определения, а в качестве внешней границы бытия, его физического определения. Это небытие есть «пустота», которая и разделяет атомы. Атом - индивидуальность, индивидуальное тело, данное во множестве экземпляров. Пустота - условие этой множественности.

Логические категории у Демокрита нигде не переходят друг в друга: «пустое» не порождается «полным» и не переходит в него, «полное» независимо от «пустого», не возникает из него и не разрешается в него. Оно просто существует, как существует и его противоположность - «пустое». В точке пересечения того и другого возникает и уничтожается определенная вещь. Вещи изменчивы, поскольку они представляют собой продукт движения атомов в пустоте, сущности же - бытие и небытие - неизменны, они не возникают и не уничтожаются, они вечны.

Сильная сторона Демокрита - простота. Его концепция нуждается лишь в минимуме условий для построения полной картины мира. Демокрит как бы утверждает: дайте мне лишь атомы и пустоту, и я покажу вам, как устроен мир. Но эта простота, завоеванная ценою утраты диалектики, есть ахиллесова пята этой философии.

В самом деле, построенный Демокритом мир эфемерен, неустойчив. Вещи - лишь случайные ассоциации атомов, они не представляют собой устойчивых сущностей; целостность вещи мимолетна, суммативна, дифференциальна. Вещь не обладает собственной центростремительной силой, связывающей атомы и удерживающей их в единстве. Связь выражает лишь природу самого атома, но не природу вещи. Сущность всех вещей одна - это атомы и пустота. Поэтому возможна лишь одна единственная наука о вещах - корпускулярная физика. Редукционизм, сведение сложного к простому, целостности к частям - таково необходимое следствие Демокритовой логики.

Но этот принцип редукции им не выдерживается. Поскольку определенность вещи несущественна, мимолетна, то ни построение, ни разложение этой определенности не составляет проблемы логики. Разложение вещи оставляет неизменными исходные категории логики. Атомный анализ как бы проходит мимо этой проблемы, сквозь вещь, не задевая ее сущности. Существенная определенность лежит как бы в ином измерении, чем сама вещь. Можно разложить вещь на составные элементы, но сущность ее останется непроанализированной. Следовательно, сущность имеет какую-то иную природу, чем вещь, и анализ ее требует иного метода, чем тот, который предлагает атомистический редукционизм.

Невольное признание этого факта содержится в самой концепции Демокрита, что мы и постараемся сейчас показать. Явным же свидетельством внутренней несостоятельности атомизма как философского метода, претендующего на объяснение природы теоретического познания, является философия Платона. Забегая вперед, скажем, что стоит допустить существование вещей, обладающих устойчивой природой, определенностью, сущностью, целостным обликом, «эйдосом», как окажется, что природа этого «эйдоса» не зависит от вещи, она неразложима, вечна и изначальна, идеальна. Точка зрения Платона имплицитно содержится в слабостях концепции Демокрита. Если существенные определения неизменны и неразложимы, а вещественные определенности изменчивы и преходящи, то преходящему «смертному» телу вещи противостоит ее бессмертная душа, ее эйдос, идея, форма. Допустите множественность сущностей , допустите, что человек – это не просто сумма атомов, а сущность, допустите множество «неделимых» - и перед вами «эйдос» Платона, бессмертная «душа» вещи...

Вернемся, однако, к Демокриту.

Признание того факта, что сущность имеет иную природу, чем вещь, природу, требующую логического, а не вещественно-корпускулярного анализа, обнаруживается в концепции Демокрита в следующем.

Атом для Демокрита не просто логическая категория. Это - физическая модель категории, простейшая физическая реальность, индивидуальность, элементарная вещь. Определения этой вещи - форма, размер и т.п. - суть существенные определения. Поскольку атом есть вещь, можно и, вообще говоря, должно подвергнуть и его корпускулярному анализу. С физической точки зрения, в таком предположении не содержится ничего невозможного: можно представить себе атом как сложное тело, составленное из более элементарных тел, последние в свою очередь также подвергнуть корпускулярному анализу и т.д. Но атом не только и не просто физическая вещь или пространственное тело. Он и логическая «сущность», «логическое тело». Делимость же атома, имея физический смысл, лишена логического смысла.

В основе атомистической философии лежит постулат о том, что всякий предмет мысли, всякое содержание, всякая определенность могут и должны быть представлены как тело. Тогда исследование этой определённости сведётся к исследованию строения тела.

Выше мы уже видели, что пространство задает то поле, в котором полагаются вещественные определенности, свойства макротел. Логическим пространством вещи оказывается ее физическое пространство. Логически вещь фиксирована лишь как определенность в пространстве, как пространственное существо. Отсюда ясно, что подобный анализ вещи может быть продолжен так далеко, как далеко простирается ее пространственная делимость. Но само пространство не содержит в себе никаких ограничений.

Следовательно, атомистическая логика допускает неограниченную делимость вещи, бесконечный анализ. Такой анализ, однако, не имел бы смысла, ибо на этом пути мы нигде не получили бы той существенной и устойчивой определенности, которая является целью анализа. Цель оказалась бы отодвинутой в бесконечность. Где-то анализу должен быть положен предел. Этим пределом и оказывается атом, «неделимый». Атомистический редукционизм необходимо требует деления и сам же кладет ему предел. Атом - это понимание предметов просто как вещей, физических тел. Но физически-телесное понимание необходимо предполагает такое же понимание и атома. И вот здесь атомизм опровергает самого себя. Атом есть вещь лишь в отношении макротел, сам же по себе он неделимая сущность, вечное, неизменное, абсолютное .

Нетрудно видеть, что с физической точки зрения этот предел установлен совершенно произвольно, и развитие физики убедительное тому подтверждение. Атом постулирован лишь для того, чтобы остановить безудержную деструкцию вещи, вещественную редукцию. Атом - своеобразная логическая «пробка», прекращающая истечение корпускулярного анализа. Атом - не просто физический объект, а логический, он - сущность. Атом – та граница, где физический анализ должен уступить место анализу логическому. Атом, как уже было сказано, есть тело, и в этом качестве он служит инструментом анализа физических макротел. Но он одновременно есть и «логическое тело», и именно в этом качестве он неделим. Неделимость его означает лишь следующее: существуют свойства, определенности, которые не могут быть разложены в пространстве на составные части. Поскольку вещь обладает существенной определенностью, целостностью, сущностью, постольку она неделима. Поскольку вещь не обладает таковой, но лишь мимолетной, несущественной определенностью, она делима. Первая вещь есть атом, вторая - макротело.

Качественная, логическая проблема элеатов о соотношении категорий (сущностей) бытия и небытия была интерпретирована Демокритом как физическая проблема взаимодействия корпускул в пустоте. Атом есть бытие, единое и неделимое, и в этом своем качестве он ничем не отличается от «бытия» элеатов. Он не имеет внутреннего строения, в нем не намечены внутренние различия Но Демокритов атом есть не просто бытие, а определённое бытие. Его определенность есть некое внешнее свойство – ограниченность в пространстве, форма. Именно определенность формы и составляет действительную существенность атома, проявляющуюся во взаимодействии атомов, следствием чего является видимый, многообразный мир. Форма и есть действительная сущность, явная существенная определенность, тогда как бытие, составляющее содержание атома, пусто, лишено определений, невыразимо. (Нетрудно увидеть здесь зачатки концепции Аристотеля, что для нас особенно важно.)

Бытие, как сущность атома, и форма, в которой именно и выражается определенность бытия и которая тоже существенна, никак внутренне не связаны друг с другом: бытие есть внешняя граница небытия, оно не мыслится как необходимое дополнение к небытию, в нем оно не заключено; небытие же - внешняя граница бытия, оно не вытекает из его сущности и не предполагается ею. Небытие можно было бы представить просто как пустое пространство, как нечто бесформенное, неопределенное. Тогда логично было бы предположить, что определенность мы получаем через ограничение этого всеобщего, через его оконечение и отрицание. В этом случае бытие, как нечто определенное, было бы просто ограниченным пространством, модусом пространства .

Причину этой модификации мы и здесь не могли бы указать, но задача имманентного логического определения была бы все же решена в духе той логической тенденции античной философии, которая была рассмотрена выше. Вместо философии мы, правда, получили бы здесь только геометрию, но и это уже шаг вперед в разработке логических основ теоретического знания.

Всего этого, однако, нет у Демокрита. Атом у него не просто ограниченное пространство, потому и его философия - не геометрия. Атом для Демокрита - именно бытие, поэтому граница у него имеет как качественную, так и количественную природу. Пространство ограничено другим качеством - бытием. И эта ограниченность наполнена. Макровещи делимы, но лишь постольку, поскольку «микротом» рассекает пустоту, пространство как простую количественность. Вещи неделимы, как только микротом натыкается на качество, на бытие, они неделимы, если их анализ предполагает какой-то иной метод. (Ниже мы увидим, что этот метод анализа сущностей и есть собственно логический метод.) Логический анализ, анализ определенности, качества у Демокрита отсутствует. Вещь анализируема лишь постольку, поскольку она есть лишь количественно-пространственная конфигурация одного единственного качества. Конфигурация изменчива, преходяща, а качество, сущность неизменны. Она есть инвариантный индивид, инвариантное тело. Изменчивы лишь варианты сущности, неизменны сами сущности как инварианты, как индивиды, атомы. Механицизм Демокрита, таким образом, касается лишь макротел. На уровне атома он стоит на позиции целостности.

Старую проблему милетской философии, элейцев и Гераклита он не разрешил. Мир ведь тоже есть целостность. Как же совместить эту существенную его определенность с фактом многообразия вещей? Как положить различие внутри единства, как теоретически осмыслить факт осуществления всеобщего через единичное, единого через различия? Этих вопросов Демокрит не разрешил, не разрешили их и механицисты всех последующих эпох. В построенном Демокритом космосе эфемерных, неустойчивых ассоциаций атомов не обитает Логос, он держится именно динамикой, изменениями; устойчивое всеобщее обитает в конечных формах, в модификациях субстанции, живет в их ритме. Мир изменчивых вещей чужд равнодушной сущности атома - бытия. Идея монистического воспроизведения мира в теоретической мысли оказалась неосуществленной. Вещи не обладают логикой, ибо их сущность безразлична к способу ее существования, внутренне она неподвижна.

Таким образом, атомистическая философия Демокрита все же заводит монистическую теоретическую мысль в тупик механицизма и метафизики. Механистическая мысль не может быть логичной. Отправляясь от единства, она не может имманентным образом ввести различия. Не признавая внутренней противоречивости сущности, она вынуждена брать эти различия в качестве данных, заимствуя их из внешнего источника, равнодушного к тому основанию, которое взяла за основу.

Подведем теперь итог всему сказанному относительно атомистической философии, предложенной Демокритом в ответ на негативную логику элейцев.

Прежде всего ясно, что в фундамент монистической философии не может быть положено просто бытие как «пребывающее». Становление есть свидетельство тождества бытия и небытия, есть единство противоположностей. Бытие и небытие – существенные определения «пребывания» - это показала атомистическая философия. Вместе с тем само соединение бытия и небытия (как ассоциация атомов в пустоте) есть нечто несущественное, мимолетное, ибо если каждая из сущностей действительна и устойчива сама по себе, тогда их единство мимолетно, преходяще, несущественно. Это понятно, ведь оно - внешнее единство, случайное, а не необходимое.

Универсальным разрешением принципиальной антиномии бытия и небытия, выдвинутой элейцами в качестве условия теоретического воспроизведения изменчивого и многообразного мира, может быть только категория становления , качественного движения, содержащая в себе две предыдущие в снятом виде.

Для того чтобы разрешить проблему единого космоса, воплощенного именно в ритме взаимопревращения вещей, чтобы понять логику вещей, необходимо найти способ представить это единство противоположностей как существенное, необходимое. Для этого субстанцию недостаточно определить просто как «пребывающее», просто как бытие. Ведь не менее субстанционально небытие, ибо без него немыслимо становление. Субстанция должна быть представлена как единство, в котором заложены различия бытия и небытия, как такое логическое пространство, в котором это различение осуществляется. Ясно, что принципом монистической философии должна быть более богатая и конкретная категория, чем рассмотренные ранее.

Образ такой категории уже был дан Гераклитом, но лишь как художественный образ. Огонь Гераклита объединяет в себе два начала - субстрата и формы, но выше их обоих. Логического же анализа своего образа Гераклит не мог осуществить. Логос выражается мерами огня, мерами субстрата, и, что самое важное, эти «меры» имманентны ему. Логическое определение вещи есть поэтому постижение ее как определенной имманентной меры всеобщего субстрата. Важнейшая же задача, поставленная перед материалистической философией Гераклитом, и состоит в понимании этой имманентности меры и субстрата.

Эту задачу философия атомизма не решила, не решила ее и вся последующая философия материализма вплоть до материализма диалектического. И не случайно: решение ее требует преодоления ряда затруднений и проблем, которые еще должны были быть поставлены в ходе исторического развития теоретической мысли вообще, философско-теоретической мысли в частности.

Точка зрения субстрата в античной философии реализована Демокритом со всей последовательностью и до конца, доведена до важнейших антиномий, которые и явились предметом упорных поисков теоретической диалектической мысли.

Выше мы уже видели, что понимание вещи, как определенной меры бытия, как меры своей собственной сущности, было достигнуто еще до Демокрита. Сущность вещей составляет их атомный субстрат; вещь есть некоторая мера этого субстрата, некоторое определенное его количество. Эта мера остается внешней сущности, как остается внешним по отношению к воде ведро, в котором она содержится. Эта мера несущественна, ее определенность «эфемерна». Существенна определенность атома, атом тоже мера, но и она оказывается внешней бытию. Она поэтому неразложима, неанализируема. Иными словами, существенную определенность атома нельзя раскрыть, обращаясь к его субстрату. Так точка зрения субстрата терпит здесь крах. Атом определен, но эта определенность логически не зависит от субстрата, хотя я принадлежит ему. Анализ субстрата ровно ничего не дает для определения формы его. Признанием этого факта и является постулат о неделимости атома.

Определённость разложима с точки зрения субстрата лишь постольку, поскольку она берется как нечто несущественное, летучее, не как сущность, а как эпифеномен . Поскольку же она есть устойчивое качество, целостность, сущность, она неделима. Вопрос может возникнуть лишь о том, что признать за такого рода сущность. Демокрит объявляет таковым атом. Но мы уже знаем, что Демокритов атом – условная граница анализа. Эта граница может быть проведена в любом месте, всюду, где мы фиксируем целостность. Пространство не задает нам этих границ, не задает их и субстрат вещи. Что же мешает в таком случае каждое качество, каждую определенность объявить целостностью, логически неделимым объектом, логическим атомом?

Атомистическая школа.

Атомизм.

Основоположником атомизма считается Левкипп, но о нем почти ничего не известно. Поэтому под древнегреческим атомизмом прежде всего имеется в виду учение Демокрита. Известно, что Демокрит написал около 70 сочинений по различным областям знаний, но ни одно из них до нас не дошло. Проблемы атомизма излагались в трудах «Большой домострой., «Малый домострой» и др.

Первоначалами бытия являются атомы и пустота, в которой находятся и движутся атомы.

Атомы (букв. «неделимые») - это мельчайшие, неделимые частицы

вещества. Каждый атом вечен и неизменен, атомы не возникают и не исчезают. Количество атомов бесконечно. Они различаются величиной, формой и положением в пространстве. Атомы подвижны, парят и «пляшут» в пустоте, подобно пылинкам, видимым в солнечном луче.

Все существующие в мире вещи состоят из атомов и пустоты. Возникновение и уничтожение вещей - результат сцепления и разделения атомов. Все вещи со временем погибают, а составляющие их атомы продолжают существовать. Четыре традиционные стихии Демокрит считал «средними ступенями», из которых складывается все остальное. Воздух, вода и земля состоят из атомов различных форм, а огонь - только из шарообразных.

Сами по себе атомы лишены таких качеств, как цвет, запах, тепло и т.п. Все эти качества-результат восприятия атомов нашими органами чувств. Ведь то, говорит Демокрит, «то один человек воспринимает как сладкое, другой может воспринимать как горькое. Отсюда необходимо проводить различие между первичными, т.е. объективно существующими, свойствами атомов (форма, величина, положение в пространстве) и вторичными-нашим субъективным восприятием этих первичных свойств.

Демокрит был основоположником механистического детерминизма. Ничто, происходящее в мире., не возникает беспричинно, все появляется в силу необходимости (ведь все происходящее в мире - это результат движения, столкновения, сцепления и т.п. атомов). Случайность придумали люди для оправдания собственного невежества.

Живое возникает из неживого без вмешательства богов и без какой-то цели. Из земли и влаги зародились сначала земноводные животные, а потом - сухопутные. Нежизнеспособные существа (слепые и глухие, безногие и безрукие) погибали, уцелели только жизнеспособные; они дали потомство; среди этих последних существ оказались и люди.

Источник движения для людей и животных - душа; она, как и все

остальное. состоит из атомов (шарообразных, как обладающих наи-

большей подвижностью). Со смертью тела душа распадается и поги-

По мнению, большинства философов, Демокрит родился в 460 г. до Н.Э.,

умер в 360/370 г. до Н.Э. Прожил почти 100 лет. Родом из Абдер, происходил

из знатной семьи и был богат, но богатство забросил, всю жизнь провел в

бедноте, предаваясь исключительно любомудрию.

Совершил путешествие в Египет к жрецам, к халдеям в Персию, был в

Эфиопии. Написал 50(60) трактатов. Свои произведения писал и днем и ночью, запираясь от всех в одном из склепов за городскими воротами.

Лучшим его произведением считается "Большой Мирострой", за которое он получил награду в 500 талантов.

На первый взгляд учение атомизма предельно просто. Начало всего

сущего – неделимые частицы-атомы и пустота. Ничто не возникает из

несуществующего и не уничтожается в несуществующее, но возникновение вещей есть соединение атомов, а уничтожение – распадение на части, в пределе на

Атомисты, подвергая элейское понятие небытия физическому

истолкованию, первыми стали учить о пустоте как таковой. Элеаты отрицали

существование небытия. "Итак, бытие – антипод пустоты, они дуалисты, раз

принимали два начала в мироздании: небытие и бытие".

У Демокрита были связи с современными учеными. Древние сообщают, что Демокрит был учеником своего предшественника и друга Левкиппа. Он общался с Анаксагором, был знаком с трудами ученых стран Востока.

Демокрит первым в древнегреческой философии вводит в научный оборот

понятие причины. Случайность он отрицает в смысле беспричинности.

В неорганической природе все совершается не по целям и в этом смысле

случайно, а у ученика могут быть и цели, и средства. Таким образом, взгляд

Демокрита на природу является строго причинным, детерминистическим.

Он проповедовал последовательную материалистическую позицию в учении о природе души и познания. "Душа, по Демокриту состоит из шарообразных

атомов, т.е. подобна огню".

Атомы души имеют способность к ощущению. Чувственные качеста

субъективны (вкус, цвет…) отсюда, он делал вывод о ненадежности

чувственного познания (Мед горек для больного желтухой и сладок здоровому).

Но в то же время, он считал, что без "темного" знания, получаемого из

ощущений не может быть никакого знания. "Сформулировав важную догадку о взаимосвязи чувственного и разумного, Демокрит не смог еще дать описания механизма перехода от одного к другому. Ему неизвестны видимо, логические формы и операции: суждение, понятие, умозаключение, обобщение,

абстрагирование". Утеря "Канона", его логического произведения, не

позволяет выявить его роль в этом. О формах мышления более подробно

расскажет Аристотель.

Интересны взгляды Демокрита на человека, общество, мораль и религию.

Он интуитивно полагал,что первые из людей вели неупорядоченную жизнь.

Когда они научились добывать огонь, у них понемногу стали развиваться

различные искусства. Он высказал версию, что искусство зародилось путем

подражания (Мы научились от паука – ткачеству, от ласточки – строить дома и

т.д.), что законы создаются людьми. Писал о дурных и хороших людях.

"Дурные люди дают клятвы богам, когда попадают в безвыходное положение.

Когда же от него избавились, все равно клятв не соблюдают".

Демокрит отвергал божественное провидение, загробную жизнь,

посмертное воздаяние за земные поступки. Этика Демокрита пронизана идеями гуманизма. "Гедонизм Демокрита не только в удовольствиях, т.к. высшее

благо блаженное состояние духа и мера в удовольствиях".

Его нравственные афоризмы дошли до нас в виде отдельных изречений.

Например, "богат тот, кто беден желаниями", "добро не в том чтобы не делать

несправедливости, а в том, чтобы даже не желать этого" и т.д.

Идеалом государственного устройства считал демократическое

государство, когда оно в благополучии, все в благополучии, когда оно гибнет

– все гибнут.

Левкипп и Демокрит гениально положили начало учению о бесконечности

миров. Они продолжали развивать догадку Анаксагора о чисто физическом

происхождении и чисто физической, а не божественной природе светил и всех явлений, наблюдаемых на небесном своде.

В целом следует отметить, что философия Демокрита – энциклопедическая

наука, основанная на атомистической гипотезе.