Прямоугольный треугольник: понятие и свойства. Прямоугольный треугольник. Полный иллюстрированный гид (2019)

В жизни нам часто придется сталкиваться с математическими задачами: в школе, в университете, а затем помогая своему ребенку с выполнением домашнего задания. Люди определенных профессий будут сталкиваться с математикой ежедневно. Поэтому полезно запоминать или вспоминать математические правила. В этой статье мы разберем одно из них: нахождение катета прямоугольного треугольника.

Что такое прямоугольный треугольник

Для начала вспомним, что такое прямоугольный треугольник. Прямоугольный треугольник – это геометрическая фигура из трех отрезков, которые соединяют точки, не лежащие на одной прямой, и один из углов этой фигуры равен 90 градусам. Стороны, образующие прямой угол, называются катетами, а сторона, которая лежит напротив прямого угла – гипотенузой.

Находим катет прямоугольного треугольника

Существует несколько способов, позволяющих узнать длину катета. Хотелось бы рассмотреть бы их подробнее.

Теорема Пифагора, чтобы найти катет прямоугольного треугольника

Если нам известны гипотенуза и катет, то мы можем найти длину неизвестного катета по теореме Пифагора. Звучит она так: “Квадрат гипотенузы равен сумме квадратов катетов”. Формула: c²=a²+b², где c – гипотенуза, a и b – катеты. Преобразовываем формулу и получаем: a²=c²-b².

Пример. Гипотенуза равна 5 см, а катет – 3 см. Преобразовываем формулу: c²=a²+b² → a²=c²-b². Далее решаем: a²=5²-3²; a²=25-9; a²=16; a=√16; a=4 (см).


Тригонометрические соотношения, чтобы найти катет прямоугольного треугольника

Также можно найти неизвестный катет, если известны любая другая сторона и любой острый угол прямоугольного треугольника. Есть четыре варианта нахождения катета при помощи тригонометрических функций: по синусу, косинусу, тангенсу, котангенсу. Для решения задач нам поможет таблица, которая находится чуть ниже. Рассмотрим эти варианты.


Найти катет прямоугольного треугольника при помощи синуса

Синус угла (sin) – это отношение противолежащего катета к гипотенузе. Формула: sin=a/c, где а – катет, лежащий против данного угла, а с – гипотенуза. Далее преобразуем формулу и получаем: a=sin*c.

Пример. Гипотенуза равна 10 см, угол А равен 30 градусов. По таблице вычисляем синус угла А, он равен 1/2. Затем по преобразованной формуле решаем: a=sin∠А*c; a=1/2*10; a=5 (см).


Найти катет прямоугольного треугольника при помощи косинуса

Косинус угла (cos) – это отношение прилежащего катета к гипотенузе. Формула: cos=b/c, где b – катет, прилежащий к данному углу, а с – гипотенуза. Преобразуем формулу и получим: b=cos*c.

Пример. Угол А равен 60 градусов, гипотенуза равна 10 см. По таблице вычисляем косинус угла А, он равен 1/2. Далее решаем: b=cos∠A*c; b=1/2*10, b=5 (см).


Найти катет прямоугольного треугольника при помощи тангенса

Тангенс угла (tg) – это отношение противолежащего катета к прилежащему. Формула: tg=a/b, где а – противолежащий к углу катет, а b – прилежащий. Преобразуем формулу и получаем: a=tg*b.

Пример. Угол А равен 45 градусов, гипотенуза равна 10 см. По таблице вычисляем тангенс угла А, он равен Решаем: a=tg∠A*b; a=1*10; a=10 (см).


Найти катет прямоугольного треугольника при помощи котангенса

Котангенс угла (ctg) – это отношение прилежащего катета к противолежащему. Формула: ctg=b/a, где b – прилежащий к углу катет, а – противолежащий. Иначе говоря, котангенс – это “перевернутый тангенс”. Получаем: b=ctg*a.

Пример. Угол А равен 30 градусов, противолежащий катет равен 5 см. По таблице тангенс угла А равен √3. Вычисляем: b=ctg∠A*a; b=√3*5; b=5√3 (см).


Итак, теперь вы знаете, как находить катет в прямоугольном треугольнике. Как видите, это не так уж и сложно, главное – запомнить формулы.

Свойства прямоугольного треугольника

Дорогие семиклассники, вы уже знаете какие геометрические фигуры называются треугольниками, умеете доказывать признаки их равенства. Знаете вы и о частных случаях треугольников: равнобедренных и прямоугольных. Свойства равнобедренных треугольников вам хорошо известны.

Но и у прямоугольных треугольников есть немало свойств. Одно, очевидное, связано с теоремой о сумме внутренних углов треугольника: в прямоугольном треугольнике сумма острых углов равно 90°. Самое удивительное свойство прямоугольного треугольника вы узнаете в 8 классе , когда изучите знаменитую теорему Пифагора.

А сейчас мы поговорим еще о двух важных свойствах. Одно из них относится к прямоугольным треугольникам с углом 30°, а другое к произвольным прямоугольным треугольникам. Сформулируем и докажем эти свойства.

Вам хорошо известно, что в геометрии принято формулировать утверждения обратные к доказанным, когда условие и заключение в утверждении меняются местами. Далеко не всегда обратные утверждения оказываются верными. В нашем случае оба обратных утверждения верны.

Свойство 1.1 В прямоугольном треугольнике катет, лежащий против угла в 30° равен половине гипотенузы.

Доказательство: Рассмотрим прямоугольный ∆ АВС, в котором ÐА=90°, ÐВ=30°, тогда ÐС=60°..gif" width="167" height="41">, следовательно , что и требовалось доказать.

Свойство 1.2 (обратное к свойству 1.1) Если в прямоугольном треугольнике катет равен половине гипотенузы, то противолежащий ему угол равен 30°.

Свойство 2.1 В прямоугольном треугольнике медиана, проведенная к гипотенузе равна половине гипотенузы.

Рассмотрим прямоугольный ∆ АВС, в котором ÐВ=90°.

BD-медиана, то есть AD=DC. Докажем, что .

Для доказательства сделаем дополнительное построение: продолжим BD за точку D так, чтоBD=DN и соединим N с A и C..gif" width="616" height="372 src=">

Дано: ∆ABC, ÐC=90o, ÐA=30o, ÐBEC=60o, EC=7см

1. ÐEBC=30o, т. к. в прямоугольном ∆BCE сумма острых углов 90о

2. BE=14см(свойство 1)

3. ÐABE=30o, так как ÐA+ÐABE=ÐBEC (свойство внешнего угла треугольника) поэтому ∆AEB- равнобедренный AE=EB=14см.

3. (свойство 1).

BC=2AN=20 см (свойство 2).

Задача 3. Доказать, что высота и медиана прямоугольного треугольника, проведенные к гипотенузе, образуют угол, равный разности острых углов треугольника.

Дано: ∆ АВС, ÐВАС=90°, АМ-медиана, АН-высота.

Доказать: ÐМАН=ÐС-ÐВ.

Доказательство:

1)ÐМАС=ÐС (по свойству 2 ∆ АМС-равнобедренный, АМ=СМ)

2)ÐМАН=ÐМАС-ÐНАС=ÐС-ÐНАС.

Остается доказать, что ÐНАС=ÐВ. Это следует из того, что ÐВ+ÐС=90°(в ∆ АВС) и ÐНАС+ÐС=90° (из ∆ АНС).

Итак, ÐМАН=ÐС-ÐВ, что и требовалось доказать.

https://pandia.ru/text/80/358/images/image014_39.gif" width="194" height="184">Дано: ∆АВС, ÐВАС=90°, АН-высота, .

Найти: ÐВ, ÐС.

Решение: Проведем медиану АМ. Пусть АН=х, тогда ВС=4х и

ВМ=МС=АМ=2х.

В прямоугольном ∆ АМН, гипотенуза АМ в 2 раза больше катета АН, поэтому ÐАМН=30°. Так как ВМ=АМ,

ÐВ=ÐВАМ100%">

Док-во: Пусть в ∆ABC ÐA=900 и AC=1/2BC

Продолжим AC за точку А так, что AD=AC. Тогда ∆ABC=∆ABD(по 2-м катетам). BD=BC=2AC=CD, таким образом ∆DBC-равносторонний, ÐС=60о и ÐАВС=30о.

Задача 5

В равнобедренном треугольнике один из углов 120о, основание равно 10 см. Найти высоту, проведенную к боковой стороне.

Решение: для начала отметим, что угол 120о может быть только при вершине треугольника и что высота проведенная к боковой стороне попадет на её продолжение.

https://pandia.ru/text/80/358/images/image019_27.gif" height="26">К вертикальной стене прислонили лестницу. На середине лестницы сидит котенок. Вдруг лестница начала скользить вниз по стене. Какую траекторию будет описывать котенок?

АВ - лестница, К - котенок.

При любом положении лестницы, пока она окончательно не упала на землю ∆АВС- прямоугольный. СК - медиана ∆АВС.

По свойству 2 СК=1/2АВ. То есть в любой момент времени длина отрезка СК постоянна.

Ответ: точка К будет двигаться по дуге окружности с центром С и радиусом СК=1/2АВ.

Задачи для самостоятельного решения.

Один из углов прямоугольного треугольника равен 60о, а разность гипотенузы и меньшего катета равна 4см. найти длину гипотенузы. В прямоугольном ∆ АВС с гипотенузой ВС и углом В, равным 60о, проведена высота АD. Найти DC, если DB=2см. В ∆АВС ÐС=90о, СD - высот, ВС=2ВD. Докажите, что АD=3ВD. Высота прямоугольного треугольника делит гипотенузу на части 3см и 9см. Найти углы треугольника и расстояние от середины гипотенузы до большего катета. Биссектриса разбивает треугольник на два равнобедренных треугольника. Найти углы исходного треугольника. Медиана разбивает треугольник на два равнобедренных. Можно ли найти углы

Исходного треугольника?

Определение. Прямоугольный треугольник - треугольник, один из углов которого прямой (равен ).

Прямоугольный треугольник - частный случай обычного треугольника. Поэтому все свойства обычных треугольников для прямоугольных сохраняются. Но есть и некоторые частные свойства, обусловленные наличием прямого угла.

Общепринятые обозначения (рис.1):

- прямой угол ;

- гипотенуза ;

- катеты ;

.

Рис. 1.

С войства прямоугольного треугольника .

Свойство 1 . Сумма углов и прямоугольного треугольника равна .

Доказательство . Вспомним, что сумма углов любого треугольника равна . Учитывая тот факт, что , получаем, что сумма оставшихся двух углов равна То есть,

Свойство 2 . В прямоугольном треугольнике гипотенуза больше любого из катетов (является самой большой стороной).

Доказательство . Вспомним, что в треугольнике против большего угла лежит большая сторона (и наоборот). Из доказанного выше свойства 1 следует, что сумма углов и прямоугольного треугольника равна . Так как угол треугольника не может равняться 0, то каждый из них меньше . Значит, является самым большим, а, значит, напротив него лежит наибольшая сторона треугольника. Значит, гипотенуза является наибольшей стороной прямоугольного треугольника, то есть: .

Свойство 3 . В прямоугольном треугольнике гипотенуза меньше суммы катетов.

Доказательство . Это свойство становится очевидным, если вспомнить неравенство треугольника .

Неравенство треугольника

В любом треугольнике сумма любых двух сторон больше третьей стороны.

Из данного неравенства сразу же следует свойство 3.

Примечание: несмотря на то, что каждый из катетов по отдельности меньше гипотенузы, их сумма оказывается больше. В числовом примере это выглядит так: , но .

в:

1-й признак (по 2 сторонам и углу между ними): если у треугольников равны две стороны и угол между ними, то такие треугольники равны между собой.

2-й признак (по стороне и двум прилежащим углам): если у треугольников равны сторона и два угла, прилежащие к данной стороне, то такие треугольники равны между собой.Примечание: пользуясь тем, что сумма углов треугольника постоянна и равна , легко доказать, что условие «прилежания» углов не является необходимым, то есть признак будет верен и в такой формулировке: «… равны сторона и два угла, то …».

3-й признак (по 3 сторонам): если у треугольников равны все три стороны, то такие треугольники равны между собой.

Естественно, все эти признаки остаются верными и для прямоугольных треугольников. Однако у прямоугольных треугольников есть одна существенная особенность - у них всегда есть пара равных прямых углов. Поэтому данные признаки для них упрощаются. Итак, сформулируем признаки равенства прямоугольных треугольников:

1-й признак (по двум катетам): если у прямоугольных треугольников катеты попарно равны, то такие треугольники равны между собой (Рис. 2).

Дано:

Рис. 2. Иллюстрация первого признака равенства прямоугольных треугольников

Доказать:

Доказательство: в прямоугольных треугольниках: . Значит, мы можем воспользоваться первым признаком равенства треугольников (по 2 сторонам и углу между ними) и получить: .

2-й признак (по катету и углу): если катет и острый угол одного прямоугольного треугольника равны катету и острому углу другого прямоугольного треугольника, то такие треугольники равны между собой (Рис. 3).

Дано:

Рис. 3. Иллюстрация второго признака равенства прямоугольных треугольников

Доказать:

Доказательство: сразу отметим, что тот факт, что равны углы, прилежащие к равным катетам, не является принципиальным. Действительно, сумма острых углов прямоугольного треугольника (по свойству 1) равна . Значит, если равна одна пара из этих углов, то равна и другая (так как их суммы одинаковы).

Доказательство же данного признака сводится к использованию второго признака равенства треугольников (по 2 углам и стороне). Действительно, по условию равны катеты и пара прилежащих к ним углов. Но вторая пара прилежащих к ним углов состоит из углов . Значит, мы можем воспользоваться вторым признаком равенства треугольников и получить: .

3-й признак (по гипотенузе и углу): если гипотенуза и острый угол одного прямоугольного треугольника равны гипотенузе и острому углу другого прямоугольного треугольника, то такие треугольники равны между собой (Рис. 4).

Дано:

Рис. 4. Иллюстрация третьего признака равенства прямоугольных треугольников

Доказать:

Доказательство: для доказательства этого признака можно сразу воспользоваться вторым признаком равенства треугольников - по стороне и двум углам (точнее, следствием, в котором указано, что углы не обязательно должны быть прилежащими к стороне). Действительно, по условию: , , а из свойств прямоугольных треугольников следует, что . Значит, мы можем воспользоваться вторым признаком равенства треугольников, и получить: .

4-й признак (по гипотенузе и катету): если гипотенуза и катет одного прямоугольного треугольника равны соответственно гипотенузе и катету другого прямоугольного треугольника, то такие треугольники равны между собой (Рис. 5).

Дано:

Рис. 5. Иллюстрация четвёртого признака равенства прямоугольных треугольников

Доказать:

Доказательство: для доказательства этого признака воспользуемся признаком равенства треугольников, который мы сформулировали и доказали на прошлом уроке, а именно: если у треугольников равны две стороны и больший угол, то такие треугольники являются равными. Действительно, по условию у нас есть две равных стороны. Кроме того, по свойству прямоугольных треугольников: . Осталось доказать, что прямой угол является наибольшим в треугольнике. Предположим, что это не так, значит, должен быть ещё хотя бы один угол, который больше . Но тогда сумма углов треугольника уже будет больше . Но это невозможно, значит, такого угла в треугольнике быть не может. Значит, прямой угол является наибольшим в прямоугольным треугольнике. А значит, можно воспользоваться сформулированным выше признаком, и получить: .

Сформулируем теперь ещё одно свойство, характерное только для прямоугольных треугольников.

Свойство

Катет, лежащий против угла в , в 2 раза меньше гипотенузы (Рис. 6).

Дано:

Рис. 6.

Доказать: AB

Доказательство: выполним дополнительное построение: продлим прямую за точку на отрезок, равный . Получим точку . Так как углы и - смежные, то их сумма равна . Поскольку , то и угол .

Значит, прямоугольные треугольники (по двум катетам: - общий, - по построению) - первый признак равенства прямоугольных треугольников.

Из равенства треугольников следует равенство всех соответствующих элементов. Значит, . Откуда: . Кроме того, (из равенства всё тех же треугольников). Значит, треугольник - равнобедренный (так как у него равны углы при основании), но равнобедренный треугольник, один из углов которого равен , - равносторонний. Из этого следует, в частности, что .

Свойство катета, лежащего против угла в

Стоит отметить, что верно и обратное утверждение: если в прямоугольном треугольнике гипотенуза в два раза больше одного из катетов, то острый угол, лежащий напротив этого катета, равен .

Примечание: признак означает, что если какое-то утверждение верно, то треугольник является прямоугольным. То есть признак позволяет идентифицировать прямоугольный треугольник.

Важно не путать признак со свойством - то есть, если треугольник прямоугольный, то у него есть такие свойства… Часто признаки и свойства являются взаимно обратными, но далеко не всегда. Например, свойство равностороннего треугольника: в равностороннем треугольнике есть угол . Но это не будет признаком равностороннего треугольника, так как не любой треугольник, у которого есть угол , является равносторонним.

Средний уровень

Прямоугольный треугольник. Полный иллюстрированный гид (2019)

ПРЯМОУГОЛЬНЫЙ ТРЕУГОЛЬНИК. НАЧАЛЬНЫЙ УРОВЕНЬ.

В задачах прямой угол вовсе не обязательно - левый нижний, так что тебе нужно научиться узнавать прямоугольный треугольник и в таком виде,

и в таком,

и в таком

Что же хорошего есть в прямоугольном треугольнике? Ну..., во-первых, есть специальные красивые названия для его сторон.

Внимание на рисунок!

Запомни и не путай: катетов - два, а гипотенуза - всего одна (единственная, неповторимая и самая длинная)!

Ну вот, названия обсудили, теперь самое важное: Теорема Пифагора.

Теорема Пифагора.

Эта теорема - ключик к решению многих задачек с участием прямоугольного треугольника. Её доказал Пифагор в совершенно незапамятные времена, и с тех пор она принесла много пользы знающим её. А самое хорошее в ней то, что она - простая.

Итак, Теорема Пифагора:

Помнишь шутку: «Пифагоровы штаны на все стороны равны!»?

Давай нарисуем эти самые пифагоровы штаны и посмотрим на них.

Правда, похоже на какие - то шорты? Ну и на какие стороны и где она равны? Почему и откуда возникла шутка? А шутка эта связана как раз с теоремой Пифагора, точнее с тем, как сам Пифагор формулировал свою теорему. А формулировал он её так:

«Сумма площадей квадратов , построенных на катетах, равна площади квадрата , построенного на гипотенузе».

Правда, немножко по-другому звучит? И вот, когда Пифагор нарисовал утверждение своей теоремы, как раз и получилась такая картинка.


На этой картинке сумма площадей маленьких квадратов равна площади большого квадрата. А чтобы дети лучше запоминали, что сумма квадратов катетов равна квадрату гипотенузы, кто-то остроумный и выдумал эту шутку про Пифагоровы штаны.

Почему же мы сейчас формулируем теорему Пифагора

А Пифагор мучился и рассуждал про площади?

Понимаешь, в древние времена не было… алгебры! Не было никаких обозначений и так далее. Не было надписей. Представляешь, как бедным древним ученикам было ужасно запоминать всё словами??! А мы можем радоваться, что у нас есть простая формулировка теоремы Пифагора. Давай её ещё раз повторим, чтобы лучше запомнить:

Теперь уже должно быть легко:

Квадрат гипотенузы равен сумме квадратов катетов.

Ну вот, самую главную теорему о прямоугольном треугольнике обсудили. Если тебе интересно, как она доказывается, читай следующие уровни теории, а сейчас пойдём дальше… в тёмный лес… тригонометрии! К ужасным словам синус, косинус, тангенс и котангенс.

Синус, косинус, тангенс, котангенс в прямоугольном треугольнике.

На самом деле все совсем не так страшно. Конечно, «настоящее» определение синуса, косинуса, тангенса и котангенса нужно смотреть в статье . Но очень не хочется, правда? Можем обрадовать: для решения задач про прямоугольный треугольник можно просто заполнить следующие простые вещи:

А почему же всё только про угол? Где же угол? Для того, чтобы в этом разобраться, нужно знать, как утверждения 1 - 4 записываются словами. Смотри, понимай и запоминай!

1.
Вообще-то звучит это так:

А что же угол? Есть ли катет, который находится напротив угла, то есть противолежащий (для угла) катет? Конечно, есть! Это катет!

А как же угол? Посмотри внимательно. Какой катет прилегает к углу? Конечно же, катет. Значит, для угла катет - прилежащий, и

А теперь, внимание! Посмотри, что у нас получилось:

Видишь, как здорово:

Теперь перейдём к тангенсу и котангенсу.

Как это теперь записать словами? Катет каким является по отношению к углу? Противолежащим, конечно - он «лежит» напротив угла. А катет? Прилегает к углу. Значит, что у нас получилось?

Видишь, числитель и знаменатель поменялись местами?

И теперь снова углы и совершили обмен:

Резюме

Давай вкратце запишем всё, что мы узнали.

Теорема Пифагора:

Главная теорема о прямоугольном треугольнике - теорема Пифагора.

Теорема Пифагора

Кстати, хорошо ли ты помнишь, что такое катеты и гипотенуза? Если не очень, то смотри на рисунок - освежай знания

Вполне возможно, что ты уже много раз использовал теорему Пифагора, а вот задумывался ли ты, почему же верна такая теорема. Как бы её доказать? А давай поступим, как древние греки. Нарисуем квадрат со стороной.

Видишь, как хитро мы поделили его стороны на отрезки длин и!

А теперь соединим отмеченные точки

Тут мы, правда ещё кое что отметили, но ты сам посмотри на рисунок и подумай, почему так.

Чему же равна площадь большего квадрата? Правильно, . А площадь меньшего? Конечно, . Осталась суммарная площадь четырех уголков. Представь, что мы взяли их по два и прислонили друг к другу гипотенузами. Что получилось? Два прямоугольника. Значит, площадь «обрезков» равна.

Давай теперь соберем всё вместе.

Преобразуем:

Вот и побывали мы Пифагором - доказали его теорему древним способом.

Прямоугольный треугольник и тригонометрия

Для прямоугольного треугольника выполняются следующие соотношения:

Синус острого угла равен отношению противолежащего катета к гипотенузе

Косинус острого угла равен отношению прилежащего катета к гипотенузе.

Тангенс острого угла равен отношению противолежащего катета к прилежащему катету.

Котангенс острого угла равен отношению прилежащего катета к противолежащему катету.

И ещё раз всё это в виде таблички:

Это очень удобно!

Признаки равенства прямоугольных треугольников

I. По двум катетам

II. По катету и гипотенузе

III. По гипотенузе и острому углу

IV. По катету и острому углу

a)

b)

Внимание! Здесь очень важно, чтобы катеты были «соответствующие». Например, если будет так:

То ТРЕУГОЛЬНИКИ НЕ РАВНЫ , несмотря на то, что имеют по одному одинаковому острому углу.

Нужно, чтобы в обоих треугольниках катет был прилежащим, или в обоих - противолежащим .

Ты заметил, чем отличаются признаки равенства прямоугольных треугольников от обычных признаков равенства треугольников? Загляни в тему « и обрати внимание на то, что для равенства «рядовых» треугольников нужно равенство трех их элементов: две стороны и угол между ними, два угла и сторона между ними или три стороны. А вот для равенства прямоугольных треугольников достаточно всего двух соответственных элементов. Здорово, правда?

Примерно такая же ситуация и с признаками подобия прямоугольных треугольников.

Признаки подобия прямоугольных треугольников

I. По острому углу

II. По двум катетам

III. По катету и гипотенузе

Медиана в прямоугольном треугольнике

Почему это так?

Рассмотрим вместо прямоугольного треугольника целый прямоугольник.

Проведём диагональ и рассмотрим точку - точку пересечения диагоналей. Что известно про диагонали прямоугольника?

И что из этого следует?

Вот и получилось, что

  1. - медиана:

Запомни этот факт! Очень помогает!

А что ещё более удивительно, так это то, что верно и обратное утверждение.

Что же хорошего можно получить из того, что медиана, проведенная к гипотенузе, равна половине гипотенузы? А давай посмотрим на картинку

Посмотри внимательно. У нас есть: , то есть расстояния от точки до всех трёх вершин треугольника оказались равны. Но в треугольнике есть всего одна точка, расстояния от которой о всех трёх вершин треугольника равны, и это - ЦЕНТР ОПИСАННОЙ ОКРУЖНОСТИ. Значит, что получилось?

Вот давай мы начнём с этого «кроме того...».

Посмотрим на и.

Но у подобных треугольников все углы равны!

То же самое можно сказать и про и

А теперь нарисуем это вместе:

Какую же пользу можно извлечь из этого «тройственного» подобия.

Ну, например - две формулы для высоты прямоугольного треугольника.

Запишем отношения соответствующих сторон:

Для нахождения высоты решаем пропорцию и получаем первую формулу "Высота в прямоугольном треугольнике" :

Итак, применим подобие: .

Что теперь получится?

Опять решаем пропорцию и получаем вторую формулу :

Обе эти формулы нужно очень хорошо помнить и применять ту, которую удобнее. Запишем их ещё раз

Теорема Пифагора:

В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов: .

Признаки равенства прямоугольных треугольников:

  • по двум катетам:
  • по катету и гипотенузе: или
  • по катету и прилежащему острому углу: или
  • по катету и противолежащему острому углу: или
  • по гипотенузе и остром углу: или.

Признаки подобия прямоугольных треугольников:

  • одному острому углу: или
  • из пропорциональности двух катетов:
  • из пропорциональности катета и гипотенузы: или.

Синус, косинус, тангенс, котангенс в прямоугольном треугольнике

  • Синусом острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе:
  • Косинусом острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе:
  • Тангенсом острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему:
  • Котангенсом острого угла прямоугольного треугольника называется отношение прилежащего катета к противолежащему: .

Высота прямоугольного треугольника: или.

В прямоугольном треугольнике медиана , проведённая из вершины прямого угла, равна половине гипотенузы: .

Площадь прямоугольного треугольника:

  • через катеты:

Инструкция

Углы, противолежащие катетам a и b обозначим соответственно через A и B. Гипотенуза, по определению, это сторона прямоугольного треугольника, которая противоположна прямому углу (при этом с другими сторонами треугольника гипотенуза образует острые углы). Длину гипотенузы обозначим через с.

Вам понадобится:
Калькулятор.

Воспользуйтесь для катета следующим выражением: a=sqrt(c^2-b^2), в том случае, если вам известны величины гипотенузы и другого катета. Это выражение получается из теоремы Пифагора, которая гласит, что квадрат гипотенузы треугольника сумме квадратов катетов. Оператор sqrt извлечение квадратного корня. Знак "^2" означает возведение во вторую степень.

Используйте формулу a=c*sinA, если вам известна гипотенуза (c) и угол, противолежащий искомому (этот угол мы обозначили, как A).
Выражение a=c*cosB используйте для нахождения катета, если вам известна гипотенуза (c) и угол, прилежащий искомому катету (этот угол мы обозначили как B).
Вычислите катет по a=b*tgA в случае, задан катет b и угол, противолежащий искомому катету (этот угол мы условились обозначать A).

Обратите внимание:
Если же в вашей задаче катет не находится ни одним из описанных способов, скорее всего, её можно свести к какому-то из них.

Полезные советы:
Все эти выражения получаются из общеизвестных определений тригонометрических функций, поэтому, даже если вы забыли какое-то из них, вы всегда сможете путём несложных операций его быстро вывести. Также, полезно знать значения тригонометрических функций для наиболее типичных углов 30, 45, 60, 90, 180 градусов.

Видео по теме

Источники:

  • «Пособие по математике для поступающих в вузы», под ред. Г.Н. Яковлева, 1982
  • катет прямоугольного треугольника

Квадратный треугольник более точно называется прямоугольным треугольником. Соотношения между сторонами и углами этой геометрической фигуры подробно рассматриваются в математической дисциплине тригонометрии.

Вам понадобится

  • - лист бумаги;
  • - ручка;
  • - таблицы Брадиса;
  • - калькулятор.

Инструкция

Найдите треугольника с помощью теоремы Пифагора. Согласно этой теореме, квадрат гипотенузы равен сумме квадратов катетов: с2 = a2+b2 , где с – гипотенуза треугольника , a и b – его катеты. Чтобы применить это , нужно знать длину любых двух сторон прямоугольного треугольника .

Если по условиям заданы размеры катетов, отыщите длину гипотенузы. Для этого с помощью извлеките квадратный корень из суммы катетов, каждый из которых предварительно возведите в квадрат.

Вычислите длину одного из катетов, если известны размеры гипотенузы и другого катета. При помощи калькулятора извлеките квадратный корень из разности гипотенузы и известного катета, также возведенного в квадрат.

Если в задаче заданы гипотенуза и один из прилежащих к ней острых углов, используйте таблицы Брадиса. В них приведены значения тригонометрических функций для большого числа углов. Воспользуйтесь калькулятором с функциями синуса и косинуса, а также теоремами тригонометрии, которые описывают соотношения между сторонами и прямоугольного треугольника .

Найдите катеты при помощи основных тригонометрических функций: a = c*sin α, b = c*cos α, где а – катет, противолежащий к углу α, b – катет, прилежащий к углу α. Подобным образом посчитайте размер сторон треугольника , если заданы гипотенуза и другой острый угол: b = c*sin β, a = c*cos β, где b – катет, противолежащий к углу β, а – катет, прилежащий к углу β.

В случае, a и прилежащий к нему острый угол β, не забывайте, что в прямоугольном треугольнике сумма острых углов всегда равна 90°: α + β = 90°. Отыщите значение угла, противолежащего к катету а: α = 90° – β. Или воспользуйтесь тригонометрическими формулами приведения: sin α = sin (90° – β) = cos β; tg α = tg (90° – β) = ctg β = 1/tg β.

Видео по теме

Источники:

  • Как найти стороны прямоугольного треугольника по катету и острому углу в 2019

Совет 3: Как найти острый угол в прямоугольном треугольнике

Прямоугольный треугольник, вероятно, - одна из самых известных, с исторической точки зрения, геометрических фигур. Пифагоровым "штанам" конкуренцию может составить лишь "Эврика!" Архимеда.

Вам понадобится

  • - чертеж треугольника;
  • - линейка;
  • - транспортир.

Инструкция

Сумма углов треугольника составляет 180 градусов. В прямоугольном треугольнике один угол (прямой) всегда будет 90 градусов, а остальные острыми, т.е. меньше 90 градусов каждый. Чтобы определить, какой угол в прямоугольном треугольнике является прямым, измерьте с помощью линейки стороны треугольника и определите наибольшую. Она гипотенуза (AB) и располагается напротив прямого угла (C). Остальные две стороны образуют прямой угол и катетами (AC, BC).

Когда определили, какой угол является острым, вы можете либо величину угла при помощи транспортира, либо рассчитать с помощью математических формул.

Чтобы определить величину угла с помощью транспортира, совместите его вершину (обозначим ее буквой А) с специальной отметкой на линейке в центре транспортира, катет АС должен совпадать с ее верхним краем. Отметьте на полукруглой части транспортира точку, через которую гипотенуза AB. Значение в этой точке соответствует величине угла в градусах. Если на транспортире указаны 2 величины, то для острого угла нужно выбирать меньшую, для тупого - большую.

Полученное значение найдите в справочных Брадиса и определите какому углу соответствует полученное числовое значение. Этим методом пользовались наши бабушки.

В наше достаточно взять с функцией вычисления тригонометрических формул. Например, встроенный калькулятор Windows. Запустите приложение "Калькулятор", в пункте меню "Вид" выберете пункт "Инженерный". Вычислите синус искомого угла, например, sin (A) = BC/AB = 2/4 = 0.5

Переключите калькулятор в режим обратных функций, кликнув по кнопке INV на табло калькулятора, затем кликните по кнопке функции арксинуса (на табло обозначена, как sin в минус первой степени). В окошке расчета появится следующая надпись: asind (0.5) = 30. Т.е. значение искомого угла - 30 градусов.