Фуллерены как выглядит. Геометрия молекулы фуллерена и кристаллическая решетка фуллерита. Углеродные наночастицы и нанотрубки

Наиболее эффективный способ получения фуллеренов основан на термическом разложении графита. При умеренном нагревании графита разрывается связь между отдельными слоями графита, но не происходит разложения испаряемого материала на отдельные атомы. При этом испаряемый слой состоит из отдельных фрагментов, представляющих собой комбинацию шестиугольников. Из этих фрагментов и происходит построение молекулы С60 и других фуллеренов. Для разложения графита при получении фуллеренов используются резистивный и высокочастотный нагрев графитового электрода, сжигание углеводородов, лазерное облучение поверхности графита, испарение графита сфокусированным солнечным лучом. Эти процессы проводятся в буферном газе, в качестве которого обычно используется гелий. Чаще всего для получения фуллеренов применятся дуговой разряд с графитовыми электродами в гелиевой атмосфере. Основная роль гелия связана с охлаждением фрагментов, которые имеют высокую степень колебательного возбуждения, что препятствует их объединению в стабильные структуры. Оптимальное давление гелия находится в диапазоне 50-100 Торр.

Основа метода проста: между двумя графитовыми электродами зажигается электрическая дуга, в которой испаряется анод. На стенках реактора осаждается сажа, содержащая от 1 до 40 % (в зависимости от геометрических и технологических параметров) фуллеренов. Для экстракции фуллеренов из фуллеренсодержащей сажи, сепарации и очистки используются жидкостная экстракция и колоночная хроматография. На первой стадии сажа обрабатывается неполярным растворителем (толуол, ксилол, сероуглерод). Эффективность экстракции обеспечивается применением аппарата Сокслета или обработкой ультразвуком. Полученный раствор фуллеренов отделяется от осадка фильтрованием и центрифугированием, растворитель отгоняют или испаряют. Твердый осадок содержит смесь фуллеренов, в различной степени сольватированных растворителем. Разделение фуллеренов на отдельные соединения проводят методами колоночной жидкостной хроматографии или жидкостной хроматографии высокого давления. Полное удаление остатка растворителя из твердого образца фуллерена осуществляется путем выдерживания при температуре 150-250 °С в условиях динамического вакуума в течение нескольких часов. Дальнейшее повышение степени чистоты достигается при сублимации очищенных образцов

8. Перспективы практического использования фуллеренов и фуллеритов

Открытие фуллеренов уже привело к созданию новых разделов физики твердого тела и химии (стереохимии). Активно исследуется биологическая активность фуллеренов и их производных. Показано, что представители этого класса способны ингибировать различные ферменты, вызывать специфическое расщепление молекул ДНК, способствовать переносу электронов через биологические мембраны, активно участвовать в различных окислительно-восстановительных процессах в организме. Начаты работы по изучению метаболизма фуллеренов, особое внимание уделяется противовирусным свойствам. Показано, в частности, что некоторые производные фуллеренов способны ингибировать протеазу вируса СПИДа. Широко обсуждается идея создания противораковых медицинских препаратов на основе водорастворимых эндоэдральных соединений фуллеренов с радиоактивными изотопами. Но здесь мы коснемся в основном перспектив применения фуллереновых материалов в технике и электронике.

Возможность получения сверхтвердых материалов и алмазов. Большие надежды возлагаются на попытки использовать фулле-рен, имеющий частичную sp^3-гибридизацию, как исходное сырье, замещающее графит при синтезе алмазов, пригодных для технического использования. Японские исследователи, изучавшие воздействие давления на фуллерен в диапазоне 8- 53 ГПа, показали, что переход фуллерен-алмаз начинается при давлении 16 ГПа и температуре 380 К, что значительно ниже, чем

для перехода графит- алмаз. Была показана возможность получения

крупных (до 600-800 мкм) алмазов при температуре 1000 °С и давлениях до 2 ГПа. Выход больших алмазов при этом достигал 33 вес. %. Линии рамановского рассеяния при частоте 1331 см^-1 имели ширину 2 см^-1 что указывает на высокое качество полученных алмазов. Активно исследуется также возможность получения сверхтвердых полимеризованных давлением фуллеритовых фаз.

Фуллерены как прекурсоры для роста алмазных пленок и карбида кремния. Пленки широкозонных полупроводников, таких как алмаз и карбид кремния, перспективны для использования в высокотемпературной, высокоскоростной электронике и оптоэлектронике, включающей ультрафиолетовый диапазон. Стоимость таких приборов зависит от развития химических методов осаждения (CVD) широкозонных пленок и совместимости этих методов со стандартной кремниевой технологией. Основная проблема в выращивании алмазных пленок - это направить реакцию предпочтительно по пути образования фазы sp ^3, а не sp ^2. Представляется эффективным использование фуллеренов в двух направлениях: повышение скорости формирования алмазных центров зародышеобразования на подложке и использование в качестве подходящих «строительных блоков» для выращивания алмазов в газовой фазе. Показано, что в микроволновом разряде происходит фрагментация С60 на С2, которые являются подходящим материалам для роста алмазных кристаллов. «MER Corporation» получила алмазные пленки высокого качества со скоростью роста 0.6 мкм/ч, используя фуллерены как прекурсоры роста и зародышеобразования. Авторы предсказывают, что такая высокая скорость роста значительно снизит стоимость CVD-алмазов. Значительным преимуществом является и то, что фуллерены облегчают процессы согласования параметров решетки при гетероэпитаксии, что позволяет использовать в качестве подложек ИК-материалы.

Ныне существующие процессы получения карбида кремния требуют использования температур до 1500 °С, что плохо совместимо со стандартной кремниевой технологией. Но, используя фуллерены, карбид кремния удается получить путем осаждения пленки С60 на кремниевую подложку с дальнейшим отжигом при температуре не выше 800 - 900 °С со скоростью роста 0.01 нм/с на Si-подложке.

Фуллерены как материал для литографии. Благодаря способности полимеризоваться под действием лазерного или электронного луча и образовывать при этом нерастворимую в органических растворителях фазу перспективно их применение в качестве резиста для субмикронной литографии. Фуллереновые пленки при этом выдерживают значительный нагрев, не загрязняют подложку, допускают сухое проявление.

Фуллерены как новые материалы для нелинейной оптики. Фуллеренсодержащие материалы (растворы, полимеры, жидкие сильно нелинейных оптических свойств перспективны для применения в качестве оптических ограничителей (ослабителей) интенсивного лазерного излучения; фоторефрактивных сред для записи динамических голограмм; частотных преобразователей; устройств фазового сопряжения.

Наиболее изученной областью является создание оптических ограничителей мощности на основе растворов и твердых растворов С60. Эффект нелинейного ограничения пропускания начинается примерно с 0.2 - 0.5 Дж/см^2, уровень насыщенного оптического пропускания соответствует 0.1 - 0.12 Дж/см 2 . При увеличении концентрации в растворе уровень ограничения плотности энергии снижается. Например, при длине пути в образце 10 мм (коллимированный пучок) и концентрациях раствора С60 в толуоле 1*10^-4, 1.65*10^-4 и 3.3*10^-4 М насыщенное пропускание оптического ограничителя оказывалось равным 320, 165 и 45 мДж/см 2 соответственно. Показано, что на длине волны 532 нм при различной длительности импульса т (500 фс, 5 пс, 10 не) нелинейно-оптическое ограничение проявляется при плотности энергии 2, 9 и 60 мДж/см^2. При больших плотностях вводимой энергии (более 20 Дж/см^2) дополнительно к эффекту нелинейного насыщенного поглощения с возбужденного уровня наблюдается дефокусировка пучка в образце, связанная с нелинейным поглощением, повышением температуры образца и изменением показателя преломления в области прохождения пучка. Для высших фуллеренов граница спектров поглощения сдвигается в область больших длин волн, что позволяет получить оптическое ограничение на л = 1.064 мкм.

Для создания твердотельного оптического ограничителя существенной является возможность введения фуллеренов в твердотельную матрицу при сохранении молекулы как целого и образовании гомогенного твердого раствора. Необходим также подбор матрицы, обладающей высокой лучевой стойкостью, хорошей прозрачностью и высоким оптическим качеством. В качестве твердотельных матриц применяются полимеры и стеклообразные материалы. Сообщается об успешном приготовлении твердого раствора С60 в SiO 2 на основе использования золь-гель-технологии. Образцы имели оптическое ограничение на уровне 2-3 мДж/см^2 и порог разрушения более 1 Дж/сv^2. Описан также оптический ограничитель на полистирольной матрице и показано, что в этом случае эффект оптического ограничения в 5 раз лучше, чем для С60 в растворе. При введении фуллеренов в лазерные фосфатные стекла показано, что фуллерены С60, и С70 в стеклах не разрушаются и механическая прочность допированных фуллеренами стекол оказывается выше, чем чистых.

Интересным применением нелинейно-оптического ограничения мощности излучения является использование фуллеренов в резонаторе лазеров для подавления пичкового режима при самосинхронизации мод. Высокая спепень нелинейности среды с фуллеренами может быть использована в качестве бистабильного элемента для сжатия импульса в наносекундной области длительностей.

Наличие в электронной структуре фуллеренов пи -электронных систем приводит, как известно, к большой величине нелинейной восприимчивости, что предполагает возможность создания эффективных генераторов третьей оптической гармоники. Наличие ненулевых компонент тензора нелинейной восприимчивости х (3) является необходимым условием для осуществления процесса генерации третьей гармоники, но для его практического использования с эффективностью, составляющей десятки процентов, необходимо наличие фазового синхронизма в среде. Эффективная генерация

может быть получена в слоистых структурах с квазисинхронизмом взаимодействующих волн. Слои, содержащие фуллерен, должны иметь толщину, равную когерентной длине взаимодействия, а разделяющие их слои с практически нулевой кубичной восприимчивостью - толщину, обеспечивающую сдвиг фазы на пи между излучением основной частоты и третьей гармоники.

Фуллерены как новые полупроводниковые и наноконструкционные материалы. Фуллериты как полупроводники с запрещенной зоной порядка 2 эВ можно использовать для создания полевого транзистора, фотовольтаических приборов, солнечных батарей, и примеры такого использования есть. Однако они вряд ли могут соперничать по параметрам с обычными приборами с развитой технологией на основе Si или GaAs. Гораздо более перспективным является использование фуллереновой молекулы как готового наноразмерного объекта для создания приборов и устройств наноэлектроники на новых физических принципах.

Молекулу фуллерена, например, можно размещать на поверхности подложки заданным образом, используя сканирующий туннельный (СТМ) или атомный силовой (АСМ) микроскоп, и использовать это как способ записи информации. Для считывания информации используется сканирование поверхности тем же зондом. При этом 1 бит информации - это наличие или отсутствие молекулы диаметром 0.7 нм, что позволяет достичь рекордной плотности записи информации. Такие эксперименты проводятся на фирме «Bell». Интересны для перспективных устройств памяти и эндоэдральные комплексы редкоземельных элементов, таких как тербий, гадолиний, диспрозий, обладающих большими магнитными моментами. Фуллерен, внутри которого находится такой атом, должен обладать свойствами магнитного диполя, ориентацией которого можно управлять внешним магнитным полем. Эти комплексы (в виде субмонослойной пленки) могут служить основой магнитной запоминающей среды с плотностью записи до 10^12 бит/см^2 (для сравнения оптические диски позволяют достичь поверхностной плотности записи 10^8 бит/ см^2).

Рисунок 12 . Принципиальная схема одномолекулярного транзистора на молекуле С60

Были разработаны физические принципы создания аналога транзистора на одной молекуле фуллерена, который может служить усилителем наноамперного диапазона (рис. 12 ). Два точечных наноконтакта расположены на расстоянии порядка 1-5 нм по одну сторону молекулы С60. Один из электродов является истоком, другой играет роль стока. Третий электрод (сетка) представляет собой маленький пьезоэлектрический кристалл и подводится на ван-дер-ваальсово расстояние по другую сторону молекулы. Входной сигнал подается на пьезоэлемент (острие), деформирующий молекулу, расположенную между электродами - истоком и стоком, и модулирует проводимость интрамолекулярного перехода. Прозрачность молекулярного канала токопротекания зависит от степени размытия волновых функций металла в области фуллереновой молекулы. Простая модель этого транзисторного эффекта - это туннельный барьер, высота которого модулируется независимо от его ширины, т. е. молекула С60 используется как природный туннельный барьер. Предполагаемые преимущества такого элемента - малые размеры и очень короткое время пролета электронов в туннельном режиме по сравнению с баллистическим случаем, следовательно более высокое быстродействие активного элемента. Рассматривается возможность интеграции, т. е. создания более чем одного активного элемента на молекулу С60.

Углеродные наночастицы и нанотрубки

Вслед за открытием фуллеренов С60 и С70 при исследовании продуктов, получаемых при сгорании графита в электрической дуге или мощном лазерном луче, были обнаружены частицы, состоящие из атомов углерода, имеющие правильную форму и размеры от десятков до сотен нанометров и поэтому получившие название кроме фуллеренов еще и наночастиц.

Возникает вопрос, почему так долго не могли открыть фуллерены, получающиеся из такого распространенного материала, как графит? Существуют две основные причины: во-первых, ковалентная связь атомов углерода очень прочная: чтобы ее разорвать, необходимы температуры выше 4000°С; во-вторых, для их обнаружения требуется очень сложная аппаратура - просвечивающие электронные микроскопы с высоким разрешением. Как теперь известно, наночастицы могут иметь самые причудливые формы. Были представлены различные углеродные образования в виде известных форм. С практической точки зрения для наноэлектроники, которая приходит сейчас на смену микроэлектронике, наибольший интерес представляют нанотрубы. Эти углеродные образования были открыты в 1991 году японским ученым С. Иджима. Нанотрубы представляют собой конечные графитовые плоскости, свернутые в виде цилиндра, они могут быть с открытыми концами или с закрытыми. Эти образования интересны и с чисто научной точки зрения, как модель одномерных структур. Действительно, в настоящее время обнаружены однослойные нанотрубы диаметром 9 А (0,9 нм). На боковой поверхности атомы углерода, как и в графитовой плоскости, располагаются в узлах шестиугольников, но в чашках, которые закрывают цилиндры с торцов, могут существовать и пятиугольники и треугольники. Чаще всего нанотрубы формируются в виде коаксиальных цилиндров.

Основной трудностью при исследовании свойств нанотрубных образований является то, что в настоящее время их не удается получить в макроскопических количествах так, чтобы аксиальные оси труб были сонаправлены. Как уже отмечалось, нанотрубы малого диаметра служат прекрасной моделью для исследований особенностей одномерных структур. Можно ожидать, что нанотрубы, подобно графиту, хорошо проводят электрический ток и, возможно, являются сверхпроводниками. Исследования в этих направлениях - дело ближайшего будущего.

В 1985 году была открыта молекула, состоящая из 60 атомов углерода, устроенная наподобие футбольного мяча, – фуллерен, названный так в честь инженера Ричарда Фуллера, прославившегося конструкциями именно такой формы. Помимо своей удивительно симметричной формы, эта молекула, являющаяся третьей (после алмаза и графита) аллотропной формой углерода, оказалась чем-то вроде философского камня алхимиков .

До последнего времени она не перестает удивлять ученых своей крайне низкой токсичностью (особенно по сравнению с чем-то похоже устроенными нанотрубками ) и другими удивительными свойствами . Механизмы взаимодействия фуллеренов с клетками пока не ясны, но результат поистине можно назвать волшебством .

Вот далеко не полный перечень тех свойств, которые заинтересовали медиков и биологов. Фуллерен и его производные можно использовать:

  • для защиты организма от радиации и ультрафиолетового излучения ;
  • для защиты от вирусов и бактерий ;
  • для защиты от аллергии . Так, в экспериментах in vivo введение производных фуллерена ингибирует анафилаксию у мышей, и при этом токсического эффекта не наблюдается;
  • как вещество, стимулирующее иммунитет ;
  • как мощный антиоксидант , поскольку он является активным акцептором радикалов. Антиоксидантная активность фуллерена сопоставима с действием антиоксидантов класса SkQ («ионов Скулачева») и в 100–1000 раз превышает действие обычных антиоксидантов, таких как витамин Е, бутилгидрокситолуол, β-каротин;
  • как лекарственные препараты для борьбы с раковыми заболеваниями ;
  • для ингибирования ангиогенеза ;
  • для защиты мозга от алкоголя ;
  • для стимуляции роста нервов;
  • для стимуляции процессов регенерации кожи. Так, фуллерен является важным компонентом косметических омолаживающих средств GRS и CEFINE;
  • для стимуляции роста волос ;
  • как лекарство с антиамилоидным действием .

Помимо этого, фуллерен может использоваться для доставки в клетку различных лекарственных веществ и невирусной доставки в клеточное ядро генетических векторов .

Казалось бы, куда еще расширять этот список, но недавно он пополнился еще одним, пожалуй, самым удивительным и непонятным, качеством фуллерена С60. При исследовании токсичности фуллерена С60, растворенного в оливковом масле, французские исследователи выяснили, что крысы, регулярно получающие раствор фуллерена С60, живут дольше, чем те, которым давали просто оливковое масло или обычную диету . (Краткий пересказ можно прочитать в статье «Оливковое масло с фуллеренами – эликсир молодости?» – ВМ.)

Растворение в масле резко повышает эффективность фуллерена С60, так как его большие агрегаты (16 и более молекул) не способны проникнуть внутрь клеток .

При этом продолжительность жизни увеличивалась не на какие-нибудь 20-30%, как в опытах с лучшими из «лекарств от старости» (такими как ресвератрол или рапамицин), а не менее чем в два раза ! Половина животных, получавших фуллерен, жили до 60 месяцев (самая старая крыса дожила до 5,5 лет). При этом в контрольной группе (с обычной диетой) продолжительность жизни 50% животных составляла 30 месяцев, а самые старые дожили лишь до 37 месяцев. Животные, получавшие оливковое масло без фуллерена, жили немного больше – 50% из них доживали до 40 месяцев, а самая старая крыса дожила до 58 месяцев.

Диаграмма выживаемости крыс, получавших: обычную диету (голубая линия), вдобавок к диете оливковое масло (красная) и оливковое масло с растворенным в нем фуллереном С60 (черная линия). Рисунок из .

Животворное действие фуллерена С60 авторы статьи приписывают его антиоксидантным свойствам. Однако не исключено, что оно может быть связано со способностью фуллерена С60 взаимодействовать с витамином А . Известно, что ретиноиды (к которым относится и витамин А) играют важную роль в экспрессии ключевых генов иммунной системы, и что локальный синтез ретиноидов, по всей видимости, играет ключевую роль в регуляции эмбриогенеза и регенерации .

К сожалению, эти опыты были поставлены на небольших группах животных и потому требуют тщательной проверки. Учитывая тот факт, что очищенный фуллерен С60, производимый в России, стоит всего около 1800 рублей за грамм, повторить эти опыты, уточнить дозировки и продолжительность «лечения» не так уж и сложно. Сложнее другое. Будет ли эта «терапия старости» так же эффективна для человека? Ведь люди – не крысы, и есть десятки примеров того, что препарат, очень эффективно действующий в экспериментах на мышах, оказывался совершенно бесполезным (если не вредным!), когда испытания переходили в клинику. Что ж – время покажет. Интересно было бы также сопоставить активность фуллерена С60 по продлению жизни с его многочисленными водорастворимыми аналогами, синтезированными в России в самое последнее время.

Написано по материалам оригинальной статьи .

Литература

  1. А.В. Елецкий, Б.М. Смирнов. (1993). Фуллерены. УФН 163 (№ 2), 33–60;
  2. Mori T. et al. (2006). Preclinical studies on safety of fullerene upon acute oral administration and evaluation for no mutagenesis. Toxicology 225, 48–54;
  3. Szwarc H, Moussa F. (2011). Toxicity of 60fullerene: confusion in the scientific literature. J. Nanosci. Lett. 1, 61–62;
  4. биомолекула: «Невидимая граница: где сталкиваются „нано“ и „био“»;
  5. Marega R., Giust D., Kremer A., Bonifazi D. (2012). Supramolecular Chemistry of Fullerenes and Carbon Nanotubes at Interfaces: Toward Applications. Supramolecular Chemistry of Fullerenes and Carbon Nanotubes (eds N. Martin and J.-F. Nierengarten), Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany;
  6. Пиотровский Л.Б. (2010). Наномедицина как часть нанотехнологий. Вестник РАМН 3, 41–46;
  7. Theriot C.A., Casey R.C., Moore V.C., Mitchell L., Reynolds J.O., Burgoyne M., et al. (2010). Dendrofullerene DF-1 provides radioprotection to radiosensitive mammalian cells. Radiat. Environ. Biophys. 49, 437–445;
  8. Andrievsky G.V., Bruskov V.I., Tykhomyrov A.A., Gudkov S.V. (2009). Peculiarities of the antioxidant and radioprotective effects of hydrated C60 fullerene nanostructures in vitro and in vivo. Free Radic. Biol. Med. 47, 786–793;
  9. Mashino T., Shimotohno K., Ikegami N., et al. (2005). Human immunodeficiency virus-reverse transcriptase inhibition and hepatitis C virus RNA-dependent RNA polymerase inhibition activities of fullerene derivatives. Bioorg. Med. Chem. Lett. 15, 1107–1109;
  10. Lu Z.S., Dai T.H., Huang L.Y., et al. (2010). Photodynamic therapy with a cationic functionalized fullerene rescues mice from fatal wound infections. Nanomedicine 5, 1525–1533;
  11. John J.R., Bateman H.R., Stover A., Gomez G., Norton S.K., Zhao W., et al. (2007). Fullerene nanomaterials inhibit the allergic response. J. Immunol. 179, 665–672;
  12. Xu Y.Y., Zhu J.D., Xiang K., Li Y.K., Sun R.H., Ma J., et al. (2011). Synthesis and immunomodulatory activity of 60fullerene-tuftsin conjugates. Biomaterials 32, 9940–9949;
  13. Gharbi N., Pressac M., Hadchouel M. et al. (2005). Fullerene is a powerful antioxidant in vivo with no acute or subacute toxicity. Nano Lett. 5, 2578–2585;
  14. Chen Z., Ma L., Liu Y., Chen C. (2012). Applications of Functionalized Fullerenes in Tumor Theranostics. Theranostics 2, 238–250;
  15. Jiao F., Liu Y., Qu Y. et al. (2010). Studies on anti-tumor and antimetastatic activities of fullerenol in a mouse breast cancer model. Carbon 48, 2231–2243;
  16. Meng H., Xing G.M., Sun B.Y., Zhao F., Lei H., Li W., et al. (2010). Potent angiogenesis inhibition by the particulate form of fullerene derivatives. ACS Nano, 4, 2773–2783;
  17. Tykhomyrov A.A., Nedzvetsky V.S., Klochkov V.K., Andrievsky G.V. (2008). Nanostructures of hydrated C60 fullerene (C60HyFn) protect rat brain against alcohol impact and attenuate behavioral impairments of alcoholized animals. Toxicology 246, 158–165;
  18. Григорьев В.В., Петрова Л.Н., Иванова Т.А., с соавт. и Бачурин С.О. (2011). Исследование нейропротекторного действия гибридных структур на основе фуллерена С60. Изв. РАН серия Биологическая 2, 163–170;
  19. Zhou Z.G., Lenk R., Dellinger A., MacFarland D., Kumar K., Wilson S.R., et al. (2009). Fullerene nanomaterials potentiate hair growth. Nanomed. Nanotechnol. Biol. Med. 5, 202–207;
  20. Bobylev A.G., Kornev A.B., Bobyleva L.G., Shpagina M.D., Fadeeva I.S., Fadeev R.S., et al. (2011). Fullerenolates: metallated polyhydroxylated fullerenes with potent antiamyloid activity. Org. Biomol. Chem. 9, 5714–5719;
  21. биомолекула: «Наномедицина будущего: трансдермальная доставка с использованием наночастиц»;
  22. Montellano A., Da Ros T., Bianco A., Prato M. (2011). Fullerene C(60) as a multifunctional system for drug and gene delivery. Nanoscale 3, 4035–4041;
  23. Кузнецова С.А., Орецкая Т.С. (2010). Нанотранспортные системы адресной доставки нуклеиновых кислот в клетки. Российские нанотехнологии 5 (№ 9–10), 40–52;
  24. Baati T., Bourasset F., Gharb N., et al. (2012) The prolongation of the lifespan of rats by repeated oral administration of 60fullerene. Biomaterials 33, 4936–4946;
  25. Пиотровский Л.Б., Еропкин М.Ю., Еропкина Е.М., Думпис М.А., Киселев О.И. (2007). Механизмы биологического действия фуллеренов – зависимость от агрегатного состояния. Психофармакология и биологическая наркология 7 (№ 2), 1548–1554;
  26. Moussa F., Roux S., Pressac M., Genin E., Hadchouel M., Trivin F., et al. (1998). In vivo reaction between 60fullerene and vitamin A in mouse liver. New J. Chem. 22, 989–992;
  27. Linney E., Donerly S., Mackey L., Dobbs-McAuliffe B. (2001). The negative side of retinoic acid receptors. Neurotoxicol Teratol. 33, 631–640;
  28. Gudas L.J. (2012). Emerging Roles for Retinoids in Regeneration and Differentiation in Normal and Disease States. Biochim Biophys Acta 1821, 213–221.

Портал «Вечная молодость»

Свойства… Но обо всём по порядку.

В начале — о шунгите.

Шунгит — это минерал черного цвета, содержащий 93-98% углерода и до 3-4% соединений водорода, кислорода, азота, серы, воды. В золе минерала содержится ванадий, молибден, никель, вольфрам, селен. Название минерал получил по поселку Шуньга в Карелии, где находятся его основные месторождения.

Шунгит образовался из органических донных отложений - сапропеля - примерно 600 млн лет назад, а по некоторым источникам - 2 млрд лет назад. Эти органические осадки (трупы рачков, водорослей и прочих улиток), прикрываемые сверху все новыми наслоениями, постепенно уплотнялись, обезвоживались и погружались в глубины земли. Под влиянием сжатия и высокой температуры шел процесс метаморфизации. В результате этого процесса образовался распыленный в минеральной матрице аморфный углерод в виде характерных именно для шунгита глобул-фуллеренов.

Теперь о фуллеренах

Что же такое, этот фуллерен, содержащийся в шунгите? Фуллерены — это одна из разновидностей углерода. Так, со школы мы помним, что углерод имеет несколько форм:

  • алмаз,
  • графит,
  • уголь.

Фуллерены — это просто ещё одна форма углерода. Отличается она тем, что молекулы фуллеренов представляют собой шары-глобулы из правильных многогранников, составленные из молекул того самого углерода:

Но чем же так полезны фуллерены?

Фуллерены используются в технике полупроводников, для разнообразных исследований (оптики, квантовой механики), фоторезистенции, в области сверхпроводников, в механике для изготовления веществ для уменьшения трения, в аккумуляторной технике, при синтезе алмазов, изготовлении фотобатарей и многих других отраслях. Из которых одна — для изготовления лекарств.

И опять же мы вернулись к нашему вопросу — чем же так полезны фуллерены ? Здесь можно обратиться к Григорию Андриевскому, работающему с группой учёных в Институте терапии Академии медицинских наук Украины именно над этим вопросом. В своих исследованиях учёный раскрыл, что к чему.

Так, фуллерены в шунгите находятся в особой форме — гидратированной. То есть, они соединены с водой и могут растворяться в воде. Соответственно, фуллерены могут вымываться из шунгита и образовывать раствор фуллеренов — единственную активную форму фуллеренов на сегодня.

Далее, водные растворы фуллеренов — это мощные антиоксиданты . То есть, они, подобно витаминам Е и С (и другим веществам) помогают организму справляться со свободными радикалами — веществами, которые образуются в организме при воспалительных процессах и очень агрессивно взаимодействуют с окружающими их веществами — разрушая необходимые организму структуры. Но, в отличие от витаминов, фуллерены не расходуются при нейтрализации свободных радикалов — и могут делать их безопасными, пока не будут выведены из организма естественным путём.

Соответственно, количества фуллеренов, эффективно работающие как антиоксиданты, могут находиться в организме в намного меньших количествах, чем витамины. По сравнению с ними

фуллерены могут работать в сверхмалых дозах.

Соответственно, используя водные растворы фуллеренов, можно снизить количество свободных радикалов в организме — и помочь телу справляться с негативными процессами. Что, собственно, и делает шунгитовая вода — тот самый водный раствор фуллеренов.

И очень важное дополнение от Григория Андриевского по поводу лечебных свойств фуллеренов из шунгита:

Пока шли только опыты на добровольцах, включая меня самого. Поэтому не следует подогревать ажиотаж и внушать несбыточные надежды больным. Да, у нас есть многообещающие результаты фундаментальных исследований, полученные в основном на животных и клеточных культурах. Но, пока препараты и методики не прошли проверки и апробации в установленном порядке, мы не имеем ни морального, ни иного права называть их лекарственными препаратами и лечебными методиками.

И, наконец, к шунгитовой воде

Шунгитовая вода — возвращаемся к ней. Существует два противоположных мнения о приготовлении и использовании шунгитовой воды.

Первое озвучено канд. хим. наук О. В. Мосином (Московская государственная академия тонкой химической технологии им. М. В. Ломоносова):

Вода, настоянная на шунгите , становится не просто чистой питьевой водой, но и молекулярно-коллоидным раствором гидратированных фуллеренов, которые относятся к новому поколению лекарственных и профилактических средств с многоплановым действием на организм.

Второе мнение о использовании шунгита озвучивает директор Института геологии Карельского научного центра РАН д. геол.-м. н. Владимир Щипцов:

То, что шунгит очищает воду, доказано, но лишь в том случае, если он входит в качестве составной части в специальные фильтры . Вода же, настоянная просто на куске минерала, может быть даже вредна - в результате химической реакции образуется, по сути, малоконцентрированный раствор кислоты.

Итак, чтобы приготовить шунгитовую воду — нужно настаивать воду на минерале или пропускать через специальные фильтры? Давайте углубимся в тему. И, поскольку шунгитовая вода — это водный раствор фуллеренов, то от них мы никуда не денемся.

Так, фуллерены растворяются в воде с большим трудом. Зато, если они растворены, то вокруг каждого шара-фуллерена образуется многослойная оболочка из правильно расположенных молекул воды, примерно в десять молекулярных слоев. Эту водяную, иначе говоря гидратную, оболочку вокруг молекулы фуллерена можно назвать структурированной водой .

По своим свойствам вода, окружающая молекулу фуллерена, существенно отличается от обычной. И очень похожа на связанную воду в клетках организма. Так, в живой клетке, по сути, очень мало обычной, знакомой нам свободной воды. Вся вода связана с окружающими её молекулами. И представляет собой что-то вроде желе. Механизм образования связанной воды в клетках похож на механизм образования водной оболочки вокруг молекулы фуллерена.

Таким образом, в растворе шунгитовой воды можно выделить выделяется два сорта воды:

  1. структурированная вода, окружающая молекулы фуллерена (как и молекулы органических веществ в клетках),
  2. и свободная вода.

При выпаривании растворов в первую очередь испаряется именно свободная вода. Такая же водная оболочка с пониженной температурой плавления образуется вокруг молекул ДНК, в растворах ферментов. Что придаёт им устойчивость как к замерзанию, так и к нагреву.

Итак, возвращаемся к двум разным способам приготовления шунгита — настаиванию и пропусканию через слой шунгита. Чем отличаются эти способы? Они отличаются временем контакта. То есть, временем, за которое фуллерены могут выйти из структуры шунгита и образовать водный раствор.

Как мы уже упоминали ранее, фуллерены могут работать в сверхмалых дозах . То есть, для образования действительно эффективного раствора фуллеренов достаточно простого пропускания воды через шунгит или не очень длительного настаивания воды на шунгите.

Естественно, интенсивность растворения фуллеренов из шунгита зависит от степени измельчённости гранул шунгита. Так, если у вас кусок камня весом в килограмм, то воду можно настаивать долго 🙂

Поскольку завершённых научных исследований с однозначными рекомендациями по использованию шунгита нет, то нет и точной закономерности — сколько времени настаивать (фильтровать) через гранулы какого размера шунгита для приготовления раствора фуллеренов нужной концентрации.

Соответственно, единственный выход на сегодня — экспериментировать с шунгитовой водой на себе.

И прислушиваться к своим ощущениям. И, естественно, изменять воздействие при ухудшении или улучшении самочувствия.

Пишите результаты ваших экспериментов!

Фуллерены - ϶ᴛᴏ изолированные молекулы новой аллотропной модификации углерода (названы так в честь американского инженера и архитектора ячеистых куполов Р. Бакминстера Фуллера). Фуллерены в твердом со­стоянии называют фуллеритами.

Фуллерены представляют из себяустойчивые многоатом­ные кластеры углерода с числом атомов от нескольких десят­ков и выше. Число атомов углерода в таком кластере не про­извольно, а подчиняется определœенной закономерности (чис­ло атомов в кластере N = 32,44, 50, 58, 60, 70, 72, 78, 80, 82, 84 и т. д). Молекула фуллерена может содержать только четное число атомов углерода . Форма фуллеренов - полый сфероид, грани кото­рого образуют пяти- и шестиугольники. Молекула фуллерена построена из атомов С, находящихся в состоянии 2 -гибридизации, благодаря чему каждый атом имеет по три сосœеда, связанных с ним s-связями. Оставшиеся валентные электроны образуют π-систему молекулы из делокализованных двойных связей ʼʼуглерод-углеродʼʼ. Для образования сферической поверхности необходимы 12 пятиугольных углеродных фрагментов и сколько угодно шестиугольных.

Наибольший инте­рес представляет фуллерен С 60 ввиду его наибольшей стабильности и высокой симметрии. Все атомы в этой молекуле эквивалентны, каждый атом принад­лежит двум шестиугольникам и одному пятиугольнику и связан с ближайшими сосœедями одной двойной и двумя оди­ночными связями. Молекула С 60 представляет собой полый многогранник, имеющий 12 пятиугольных и 20 шестиуголь­ных симметрично расположенных граней, образующих фор­му, аналогичную форме футбольного мяча, также состояще­го из двенадцати пятиугольных и двадцати шестиугольных фасеток (в связи с этим ее также называют ʼʼфутболиноʼʼ). Свобод­ных связей у молекулы С 60 нет, и этим объясняется ее боль­шая химическая и физическая устойчивость. Благодаря это­му среди аллотропов углерода фуллерены и фуллериты - самые чистые. Диаметр молекулы С 60 равен 0,7024 нм. Ва­лентные электроны распределœены более или менее равномер­но по сферической оболочке толщиной примерно 0,4232 нм. В центре молекулы остается практически свободная от элек­тронов полость радиусом около 0,1058 нм. Так что такая мо­лекула является как бы маленькой пустой клеткой, в поло­сти которой могут размещаться атомы других элементов и даже другие молекулы, не разрушая целостность самой мо­лекулы фуллерена.

Шарообразные молекулы С 60 могут соединяться друг с другом в твердом телœе с образованием гранецентрированной кубической (ГЦК) кристаллической решетки. В кристалле фуллерита молекулы С 60 играют такую же роль, как и атомы в обычном кристалле. Расстояние между центрами ближай­ших молекул в гранецентрированной решетке, удержи­ваемых слабыми силами Ван-дер-Ваальса, составляет около 1 нм.

Необходимо отметить, что по своим электронным свойствам кристаллы чистого С 60 и многих комплексов на их базе представляют из себяно­вый класс органических полупроводников, чрезвычайно ин­тересных как с чисто фундаментальной точки зрения, так и с точки зрения возможных применений.

С фундаментальной точки зрения интерес к фуллеритам обусловлен, в частности, тем обстоятельством, что в отличие от ʼʼклассическихʼʼ полупроводников (таких как кремний), ширина разрешенных энергетических зон в кристаллах фуллеренов довольно мала, она не превышает 0,5 эВ. По этой причине в этих кристаллах возможны сильные эффекты, связанные с кулоновскими корреляциями, релаксацией решетки, и другие эффекты, что крайне интересно и может привести к открытию и наблюдению новых явлений.

Ширина первой запрещенной зоны по­рядка 2,2 ... 2,3 эВ.

Модификация поверхности молекулы фуллерена или заполнение ее внутреннего пространства атомами металлов приводит к заметному изменению физических свойств, к примеру переходу в сверхпроводящее состояние или проявлению магнетизма.

К многообразным фуллереновым производным относят­ся интеркалированные соединœения и эндоэдральные фуллерены (или эндоэдральные комплексы). При интеркаляции примеси вводятся в пустоты кристаллической решетки фуллерита͵ а эндоэдральные фуллерены образуются при внедрении атомов различного сорта внутрь кластера С п .

В случае если бы удалось найти химическую реакцию, открываю­щую окошко в каркасе фуллерена, позволяющее впустить туда некий атом или небольшую молекулу, и вновь восста­навливающую строение кластера, то получился бы краси­вый метод получения эндоэдральных фуллеренов. При этом большинство эндоэдральных металлофуллеренов в настоя­щее время производится либо в процессе формирования фуллеренов в присутствии чужеродного вещества, либо пу­тем имплантации.

Методы получения и разделœения фуллеренов . Наиболее эффективный способ получения фуллеренов основан на термическом разложении графита. При умерен­ном нагревании графита разрывается связь между отдельны­ми слоями графита͵ но не происходит разложения испаряе­мого материала на отдельные атомы. При этом испаряемый слой состоит из отдельных фрагментов, из которых и проис­ходит построение молекулы С 60 и других фуллеренов. Для разложения графита при получении фуллеренов использу­ются резистивный и высокочастотный нагрев графитового электрода, сжигание углеводородов, лазерное облучение по­верхности графита. Эти процессы проводятся в буферном газе, в качестве которого обычно используется гелий.

Чаще всœего для получения фуллеренов применяется дуго­вой разряд с графитовыми электродами в гелиевой атмосфе­ре. Основная роль гелия связана, по-видимому, с охлажде­нием фрагментов, которые имеют высокую степень колеба­тельного возбуждения, что препятствует их объединœению в стабильные структуры.

Применение фуллеренов .

Предполагаемых применений фуллеренов очень много:

· С химической устойчивостью и пустотелостью фуллеренов связаны возможности их применения в химии, микробиоло­гии и медицинœе. К примеру, их можно использовать для упаковки и доставки в требуемое место не только атомов, но и целых молекул, в т.ч. органиче­ских (фармацевтика, микробиология);

· Фуллерены как новые полупроводниковые и наноконструкционные материалы. Фуллереновая молекула является готовым наноразмерным объектом для создания приборов и устройств наноэлектроники на новых физических принципах. Разработаны физические принципы создания аналога транзистора на одной молекуле фуллерена, который может служить усилителœем тока наноамперного диапазона. В области наноэлектроники наибольший интерес с точки зрения возможных приложений вызывают квантовые точки (quantum dots). Такие точки обладают рядом уникальных оптических свойств, которые позволяют использовать их, к примеру, для управления волоконной оптической связью, либо в качестве элементов процессора в проектируемом в на­стоящее время оптическом суперкомпьютере. Фуллерены яв­ляются во многих отношениях идеальными квантовыми точ­ками. Интересны для перспективных устройств памяти и эндоэдральные комплексы редкоземельных элементов, таких как тербий (Tb), гадолиний (Gd), диспрозий (Dy), обладающих большими магнитными моментами. Фуллерен, внутри которого находится такой атом, должен обладать свойствами магнитного диполя, ориентацией которого можно управлять внешним магнитным полем. Эти комплексы (в виде многослойной пленки) могут служить основой магнитной запоминающей среды с плотностью записи до 10 12 бит/см 2 .

· Фуллерены как новые материалы для нелинœейной оп­тики. Фуллереносодержащие материалы (растворы, поли­меры, жидкие кристаллы, фуллереносодержащие стеклян­ные матрицы) обладают сильно нелинœейными оптическими свойствами и перспективны для применения в качестве: оп­тических ограничителœей (ослабителœей) интенсивного лазер­ного излучения; фоторефрактивных сред для записи динами­ческих голограмм; частотных преобразователœей; устройств фазового сопряжения. Наиболее изученной областью является создание оптиче­ских ограничителœей мощности на базе жидких и твердых растворов С 60 .

· Легированный щелочным металлом фуллерит С 60 яв­ляется проводником, а при низкой температуре и сверх­проводником. Введение атомов примеси в фуллеритовую матрицу связано с явлением интеркаляции. Интеркаляционные соединœения представляют из себяматериал, в котором атомы или молекулы примеси захвачены между слоями кри­сталлической решетки. Формально химическая связь между интеркалянтом и матрицей отсутствует. В межмолекулярные пустоты кристалла С 60 могут внедряться, не деформируя решетку, атомы примеси (в основном, щелочные, щелочноземельные и редкоземельные металлы). С 60 имеет большое сродство к электрону, щелочные металлы легко отдают электроны. Кристалл С 60 – широкозонный полупроводник и его проводимость низка, и при легировании щелочными атомами он становится проводником. К примеру, при легировании калием до образования K 3 C 60 атомы калия ионизируются до K + , а их электроны связываются с молекулой С 60 , которая становится отрицательным ионом. K 3 C 60 при температуре 18 К является сверхпроводником.

· Фуллерены - материал для литографии.Благодаря способности полимеризоваться под действием лазерного или электронного луча (степень полимеризации в отдельных слу­чаях превышает 10 6) и образовывать при этом нераствори­мую в органических растворителях фазу, перспективно при­менение фуллеренов в качестве резиста для субмикронной литографии. Фуллереновые пленки при этом выдерживают значительный нагрев, не загрязняют подложку, допускают сухое проявление. Поскольку полимеризованные кластеры С 60 сами по себе являются полупроводниками, эта технология может оказаться очень перспективной для созда­ния одноэлектронных транзисторов, работающих при ком­натной температуре. Для этого в туннельных зазорах, сфор­мированных, к примеру, на поверхности кремния, можно попытаться создать очень маленькие кластеры С 60 за счёт электронно-лучевой полимеризации.

Хиральность (chirality)

Хиральность – отсутствие симметрии относительно правой и левой стороны. К примеру, в случае если отражение объекта в идеальном плоском зеркале отличается от самого объекта͵ то объекту присуща хиральность. Молекулярная хиральность – свойство молекулы быть несовместимой со своим зеркальным отражением любой комбинацией вращений и перемещений в трёхмерном пространстве. Любая геометрическая фигура, которая не должна быть совмещена со своим отражением, принято называть хиральной.

Хиральные молекулы составляют основу живой природы, а также многих функциональных материалов. К примеру, всœе аминокислоты, входящие в состав белков, хиральны (за исключением глицина). Это относится и к сахарам – строительным звеньям углеводов и нуклеиновых кислот. Соответственно, хиральны и образованные их них макромолекулы – типичные нанообъекты: белки, нуклеиновые кислоты, углеводы и т.д.

Существенное значение хиральность имеет при синтезе сложных соединœений, обладающих лекарственными свойствами, регулярных полимеров, жидких кристаллов; отсутствие центра симметрии является ключевым условием при получении материалов для нелинœейной оптики, сегнето- и пьезоэлектриков. Большинство природных ядов – полипептидов и алкалоидов – также хиральны, а их ʼʼантиподыʼʼ практически безвредны для организма человека. С другой стороны, ʼʼантиподыʼʼ природных аминокислот и сахаров живыми организмами просто не усваиваются и даже не распознаются. Иногда антиподы лекарственных веществ бывают очень опасны, в связи с этим при производстве лекарств для очистки получаемых веществ используются различные хиральные агенты.

Фуллерены - понятие и виды. Классификация и особенности категории "Фуллерены" 2017, 2018.

Открытие фуллеренов - новой формы существования одного из самых распространенных элементов на Земле - углерода, признано одним из удивительных и важнейших открытий в науке XX столетия. Несмотря на давно известную уникальную способность атомов углерода связываться в сложные, часто разветвленные и объемные молекулярные структуры, составляющую основу всей органической химии, фактическая возможность образования только из одного углерода стабильных каркасных молекул все равно оказалось неожиданной. Экспериментальное подтверждение того, что молекулы подобного типа, состоящие из 60 и более атомов, могут возникать в ходе естественно протекающих в природе процессов, произошло в 1985 г. И задолго до этого некоторые авторы предполагали стабильность молекул с замкнутой углеродной сферой. Однако эти предположения носили сугубо умозрительный, чисто теоретический характер. Вообразить, что такие соединения могут быть получены путем химического синтеза, было довольно трудно. Поэтому данные работы остались незамеченными, и внимание на них было обращено только задним числом, уже после экспериментального обнаружения фуллеренов. Новый этап наступил в 1990 г., когда был найден метод получения новых соединений в граммовых количествах, и описан метод выделения фуллеренов в чистом виде. Очень скоро после этого были определены важнейшие структурные и физико-химические характеристики фуллерена С 60 - наиболее легко образующегося соединения среди известных фуллеренов. За свое открытие - обнаружение углеродных кластеров состава C 60 и C 70 - Р. Керл, Р. Смолли и Г. Крото в 1996 г. были удостоены Нобелевской премии по химии. Ими же и была предложена структура фуллерена C 60 , известная всем любителям футбола.

Как известно, оболочка футбольного мяча скроена из 12 пентагонов и 20 гексагонов. Теоретически возможно 12500 вариантов расположения двойных и ординарных связей. Наиболее стабильный изомер (показанный на рисунке) имеет структуру усеченного икосаэдра, в которой отсутствуют двойные связи в пентагонах. Этот изомер С 60 получил название «Бакминстерфуллерен» в честь известного архитектора по имени R. Buckminster Fuller, создавшего сооружения, куполообразный каркас которых сконструирован из пентагонов и гексагонов. Вскоре была предложена структура для С 70 , напоминающая мяч для игры в регби (с вытянутой формой).

В углеродном каркасе атомы C характеризуются sp 2 -гибридизацией, причем каждый атом углерода связан с тремя соседними атомами. Валентность 4 реализуется за счет p-связей между каждым атомом углерода и одним из его соседей. Естественно, предполагается, что p-связи могут быть делокализованы, как в ароматических соединениях. Такие структуры могут быть построены при n≥20 для любых четных кластеров. В них должно содержаться 12 пентагонов и (n-20)/2 гексагонов. Низший из теоретически возможных фуллеренов C 20 представляет собой не что иное, как додекаэдр - один из пяти правильных многогранников, в котором имеется 12 пятиугольных граней, а шестиугольные грани вовсе отсутствуют. Молекула такой формы имела бы крайне напряженную структуру, и поэтому ее существование энергетически невыгодно.

Таким образом, с точки зрения стабильности, фуллерены могут быть разбиты на два типа. Границу между ними позволяет провести т.н. правило изолированных пентагонов (Isolated Pentagon Rule, IPR). Это правило гласит, что наиболее стабильными являются те фуллерены, в которых ни одна пара пентагонов не имеет смежных ребер. Другими словами, пентагоны не касаются друг друга, и каждый пентагон окружен пятью гексагонами. Если располагать фуллерены в порядке увеличения числа атомов углерода n, то Бакминстерфуллерен - C 60 является первым представителем, удовлетворяющим правилу изолированных пентагонов, а С 70 - вторым. Среди молекул фуллеренов с n>70 всегда есть изомер, подчиняющийся IPR, и число таких изомеров быстро возрастает с ростом числа атомов. Найдено 5 изомеров для С 78 , 24 - для С 84 и 40 - для C 90 . Изомеры, имеющие в своей структуре смежные пентагоны существенно менее стабильны.

Химия фуллеренов

В настоящее время преобладающая часть научных исследований связана с химией фуллеренов. На основе фуллеренов уже синтезировано более 3 тысяч новых соединений. Столь бурное развитие химии фуллеренов связано с особенностями строения этой молекулы и наличием большого числа двойных сопряженных связей на замкнутой углеродной сфере. Комбинация фуллерена с представителями множества известных классов веществ открыла для химиков-синтетиков возможность получения многочисленных производных этого соединения.

В отличие от бензола, где длины C-C связей одинаковы, в фуллеренах можно выделить связи более «двойного» и более «одинарного» характера, и химики часто рассматривают фуллерены как электронодефицитные полиеновые системы, а не как ароматические молекулы. Если обратиться к С 60 , то в нем присутствует два типа связей: более короткие (1.39 Å) связи, пролегающие вдоль общих ребер соседствующих шестиугольных граней, и более длинные (1.45 Å), расположенные по общих ребрам пяти- и шестиугольных граней. При этом ни шестичленные, ни, тем более, пятичленные циклы не обнаруживают ароматических свойств в том смысле, в каком их проявляют бензол или иные плоские сопряженные молекулы, подчиняющиеся правилу Хюккеля. Поэтому обычно более короткие связи в С 60 считают двойными, более длинные же - одинарными. Одна из важнейших особенностей фуллеренов состоит в наличии у них необычно большого числа эквивалентных реакционных центров, что нередко приводит к сложному изомерному составу продуктов реакций с их участием. Вследствие этого большинство химических реакций с фуллеренами не являются селективными, и синтез индивидуальных соединений бывает весьма затруднен.

Среди реакций получения неорганических производных фуллерена наиболее важными являются процессы галогенирования и получения простейших галогенпроизводных, а также реакции гидрирования. Так, эти реакции были одними из первых, проведенных с фуллереном C 60 в 1991 г. Рассмотрим основные типы реакций, ведущие к образоваению данных соединений.

Сразу после открытия фуллеренов большой интерес вызвала возможность их гидрирования с образованием «фуллеранов». Первоначально представлялось возможным присоединение к фуллерену шестидесяти атомов водорода. Впоследствии в теоретических работах было показано, что в молекуле С 60 Н 60 часть атомов водорода должна оказаться внутри фуллереновой сферы, так как шестичленные кольца, подобно молекулам циклогексана, должны принять конформации «кресла» или «ванны». Поэтому известные на настоящий момент молекулы полигидрофуллеренов содержат от 2 до 36 атомов водорода для фуллерена C 60 и от 2 до 8 - для фуллерена C 70 .

При фторировании фуллеренов обнаружен полный набор соединений С 60 F n , где n принимает четные значения вплоть до 60. Фторпроизводные с n от 50 до 60 называются перфторидами и обнаружены среди продуктов фторирования масс-спектрально в чрезвычайно малых концентрациях. Существуют также гиперфториды, то есть продукты состава C 60 F n , n>60, где углеродный каркас фуллерена оказывается частично разрушенным. Предполагается, что подобное имеет место и в перфторидах. Вопросы синтеза фторидов фуллеренов различного состава являются самостоятельной интереснейшей проблемой, изучением которой наиболее активно занимаются в химического факультета МГУ им. М.В. Ломоносова.

Активное изучение процессов хлорирования фуллеренов в различных условиях началось уже в 1991 году. В первых работах авторы пытались получить хлориды С 60 путем взаимодействия хлора и фуллерена в различных растворителях. К настоящему же времени выделено и охарактеризовано несколько индивидуальных хлоридов фуллеренов C 60 и C 70 , полученных путем применения различных хлорирующих агентов.

Первые попытки бромирования фуллерена были предприняты уже в 1991 году. Фуллерен С 60 , помещенный в чистый бром при температуре 20 и 50 O С, увеличивал массу на величину, соответствующую присоединению 2-4 атомов брома на одну молекулу фуллерена. Дальнейшие исследования бромирования показали, что при взаимодействии фуллерена С 60 с молекулярным бромом в течение нескольких дней получается ярко-оранжевое вещество, состав которого, как было определено, методом элементного анализа, был С 60 Br 28 . Впоследствии было синтезировано несколько бромпроизводных фуллеренов, отличающихся широким набором значений числа атомов брома в молекуле. Для многих из них характерно образование клатратов с включением молекул свободного брома.

Интерес к перфторалкилпроизводным, в частности трифторметилированным производным фуллеренов связан, в первую очередь, с ожидаемой кинетической стабильностью этих соединений по сравнению со склонными к реакциям нуклеофильного S N 2’-замещения галогенпроизводными фуллеренов. Кроме того, перфторалкилфуллерены могут представлять интерес как соединения с высоким сродством к электрону, обусловленным даже более сильными, чем у атомов фтора, акцепторными свойствами перфторалкильных групп. К настоящему времени число выделенных и охарактеризованных индивидуальных соединений состава C 60/70 (CF 3) n , n=2-20 превышает 30, причем интенсивно ведутся работы по модификации фуллереновой сферы многими другими фторсодержащими группами - CF 2 , C 2 F 5 , C 3 F 7 .

Создание же биологически активных производных фуллерена, которые могли бы найти применение в биологии и медицине, связано с приданием молекуле фуллерена гидрофильных свойств. Одним из методов синтеза гидрофильных производных фуллерена является введение гидроксильных групп и образования фуллеренолов или фуллеролов, содержащих до 26 групп ОН, а также, вероятно, кислородные мостики, аналогичные наблюдаемым в случае оксидов. Такие соединения хорошо растворимы в воде и могут быть использованы для синтеза новых производных фуллерена.

Что же касается оксидов фуллеренов, то соединения С 60 О и С 70 О присутствуют всегда в исходных смесях фуллеренов в экстракте в небольших количествах. Вероятно, кислород присутствует в камере при электродуговом разряде и часть фуллеренов окисляется. Оксиды фуллерена хорошо разделяются на колонках с различными адсорбентами, что позволяет контролировать чистоту образцов фуллеренов, и отсутствие или присутствие оксидов в них. Однако низкая стабильность оксидов фуллеренов препятствуют их систематическому изучению.

Что можно отметить относительно органической химии фуллеренов, так это то, что, будучи электронодефицитным полиеном, фуллерен С 60 проявляет склонность к реакциям радикального, нуклеофильного и циклоприсоединения. Особенно перспективными в плане функционализации фуллереновой сферы являются разнообразные реакции циклоприсоединения. В силу своей электронной природы С 60 способен принимать участие в реакциях -циклоприсоединения, причем наиболее характерными являются случаи, когда n=1, 2, 3 и 4.

Основной проблемой, решаемой химиками-синтетиками, работающими в области синтеза производных фуллеренов, и по сей день остается селективность проводимых реакций. Особенности стереохимии присоединения к фуллеренам состоят в огромном числе теоретически возможных изомеров. Так, например, у соединения C 60 X 2 их 23, у С 60 X 4 уже 4368, среди них 8 - продукты присоединения по двум двойным связям. 29 изомеров С 60 X 4 не будут, однако, иметь химического смысла, обладая триплетным основным состоянием, возникающим в связи с наличием sp2-гибридизованного атома углерода в окружении трех sp 3 -гибридизованных атомов, образующих С-Х связи. Максимальное число теоретически возможных изомеров без учета мультиплетности основного состояния будет наблюдаться в случае С 60 X 30 и составит 985538239868524 (1294362 из них - продукты присоединения по 15 двойным связям), тогда как число несинглетных изомеров той же природы, что и в приведенном выше примере, не поддается простому учету, но из общих соображений должно постоянно увеличивать с ростом числа присоединенных групп. В любом случае, число теоретически допустимых изомеров в большинстве случаев огромно, при переходе же к менее симметричным С 70 и высшим фуллеренам оно дополнительно возрастает в разы или на порядки.

На самом же деле, многочисленные данные квантово-химических расчетов показывают, что большинство реакций галогенирования и гидрирования фуллеренов протекают с образованием если и не наиболее стабильных изомеров, то, по крайней мере, незначительно отличающихся от них по энергии. Наибольшие расхождения наблюдаются в случае низших гидридов фуллеренов, изомерный состав которых, как было показано выше, может даже слегка зависеть от пути синтеза. Но при этом стабильность образующихся изомеров все равно оказывается крайне близкой. Изучение этих закономерностей образования производных фуллеренов представляет собой интереснейшую задачу, решение которой приводит к новым достижениям в области химии фуллеренов и их производных.