Сверхтяжелые элементы. Сверхтяжелые химические элементы


Сколько элементов в химической таблице Менделеева? Все ли они занимают стабильное, устойчивое и безусловное место? О границах существования элементов в природе, нейтронной материи и синтезе сверхтяжелых элементов - член-корреспондент РАН Юрий Оганесян и доктор физико-математических наук Михаил Иткис.

Тезисы для дискуссии:

Что мы знаем и что хотим понять по проблеме синтеза сверхтяжелых элементов?

Есть ли границы существования элементов в природе?

Как происходил нуклеосинтез элементов во Вселенной?

Что обуславливает возможную стабильность сверхтяжелых элементов?

Насколько эта проблема фундаментальна и есть ли у нее политический аспект?

Возможности современной экпериментальной техники для ее решения.

Что такое нейтронная материя? Можно ли изучать ее в лабораторных условиях, а не только в процессе исследования астрофизических объектов, таких как нейтронные звезды и т. д.? Тенденции в мировой науке.

Нужно ли обществу изучение вышеуказанных фундаментальных проблем науки? Приводит ли оно к появлению новых идей в виде новых технологий, источников энергии, медицинских приборов и т. п.

Обзор темы

Известно, что все элементы от самого легкого (водорода) до самого тяжелого (урана) составляют окружающий нас мир. Они существуют в Земле. Это значит, что время их жизни больше, чем возраст самой Земли. Все элементы после урана - тяжелее его. Они образовались когда-то в процессе нуклеосинтеза, но не дожили до наших дней. Сегодня их можно получить только искусственным способом.

Концепция атома общеизвестна: ядро, которое содержит всю массу атома и его положительный заряд, и электронные орбитали. Гипотетически оно может существовать до атомных номеров: 160 и, быть может, 170. Однако граница существования элементов намечается значительно раньше, и причина кроется в нестабильности самого ядра. Поэтому вопрос о пределах существования элементов должен быть адресован ядерной физике. Если посмотреть на ядра, которые содержат разное число протонов и нейтронов, то стабильные элементы встречаются только до свинца и висмута. Затем (рис. 1) расположен «небольшой полуостров», в котором обнаружены в Земле только торий и уран. Из этого следует, что вопрос о пределах существования элементов зависит от стабильности ядер, и должен быть адресован ядерной физике.

Рис. 1. Карта изотопов с атомными номерами 70 Zі. Стабильность атомов показана плотностью цвета согласно правой шкале. Для области 112 Zі и 165 Zі приведены теоретические предсказания периодов полураспада гипотетических сверхтяжелых атомов.

Как только мы продвигаемся за уран, время жизни ядер резко падает. Изотопы заурановых элементов радиоактивны, они испытывают альфа-распад. Время жизни ядер уменьшается в логарифмическом масштабе. Эта логарифмическая шкала показывает, что от урана (92-элемента) до 100-го элемента стабильность ядер уменьшается на 20 с лишним порядков.

На самом деле, положение оказалось еще более сложным. Спонтанное деление - четвертый тип радиоактивности - настигает альфа-распад в области 100-го элемента, и в дальнейшем время жизни ядер уменьшается значительно быстрее.

Спонтанное деление было открыто К. А. Петржаком и Г. Н. Флеровым 60 лет тому назад как редкая разновидность распада урана. Оно становится основным, когда речь заходит о более тяжелых элементах.

Объяснение явления спонтанного деления было дано Нильсом Бором в 1939 г. Согласно Н. Бору, подобный процесс может произойти, если предположить, что ядерное вещество обладает свойствами бесструктурной материи типа капли заряженной жидкости. Если капля испытывает деформацию под действием электрических сил, то ее потенциальная энергия растет до определенного предела, а затем уже необратимо уменьшается с ростом деформации до тех пор, пока капля не разделится на две части. Таким образом у ядра урана возникнет некий барьер, который удерживает это ядро от деления на протяжении 10 16 лет.

Если перейти от урана к более тяжелому элементу, в ядре которого кулоновские силы значительно больше, барьер понижается, и вероятность деления сильно возрастает. Наконец, при дальнейшем увеличении заряда ядра мы придем к пределу, когда уже нет никакого барьера, т. е. когда даже сферическая форма капли оказывается неустойчивой к разделению на две части.

Это и есть предел стабильности ядра. Согласно расчетам Бора и Уиллера этот предел ожидался для элементов с атомными номерами 104–106.

Совершенно неожиданным было обнаружение в 1962 г. в Дубнинской лаборатории ядерных реакций еще и другого периода полураспада у тяжелых ядер, включая уран. Т. е. у одного и того же ядра могут быть два однотипных распада с различной вероятностью, или два времени жизни. Для урана - одно время составляет 10 16 лет, что и было обнаружено Флеровым и Петржаком, а второе очень короткое, всего 0,3 микросекунды. При двух периодах полураспада надо полагать наличие у ядра двух состояний, из которых происходит деление. Это никаким образом не вписывается в представление о капле.

Два состояния могут быть только в том случае, если тело не аморфное, а имеет внутреннюю структуру.

Итак, ядерное вещество не является полным аналогом капли заряженной жидкости

Капля есть некое приближение к описанию ядерной материи; ядро же имеет внутреннюю структуру.

Вопросами ядерной структуры серьезно занялись теоретики-ядерщики; в нашей стране - В. М. Струтинский, С. Т. Беляев, В. В. Пашкевич и др. Они решали довольно сложную задачу - как объяснить, что барьер урана является двугорбым и как меняется структура ядра при его деформации.

И это было объяснено. Но если найденное теоретиками объяснение правильно отражает свойства ядер, то когда мы придем к сверхтяжелым элементам, картина будет совсем не такой, как прогнозировалось для капли жидкости. В тяжелых элементах эта структура будет проявляться в полной мере там, где капля несостоятельна, и будет возникать так называемый структурный барьер. А это означает, что ядро может жить очень долго.

Этот нетривиальный вывод теории привел, по существу, к предсказанию гипотетической области стабильности сверхтяжелых элементов, расположенных далеко от тех элементов, которые известны и с которыми мы привыкли работать.

Как только это было предсказано, все крупнейшие лаборатории мира буквально бросились на то, чтобы экспериментально проверить эту гипотезу. Этим занимались в Соединенных Штатах, во Франции, в Германии. Однако во всех опытах были получены отрицательные результаты.

Последние два года в Дубнинской лаборатории проводились эксперименты по синтезу новых, самых тяжелых элементов с атомными номерами 114 и 116. Задача состояла в том, чтобы получить атомы новых элементов, ядра которых обладают большим избытком нейтронов. Только в этом случае мы смогли бы приблизиться к границам гипотетического «острова стабильности» и наблюдать увеличение времени жизни сверхтяжелых ядер.

Результаты опытов привели к выводу о том, что «остров стабильности» действительно существует.

Каковы пути получения (синтеза) сверхтяжелых ядер? Сначала использовался нейтронный метод синтеза, когда в ядро вгоняется очень много нейтронов. В этом случае естественным было бы облучение исходно стартового вещества мощным потоком нейтронов. Для этого использовались все более и более мощные реакторы. Однако, реакторный способ синтеза исчерпал себя на фермии (элементе с атомным номером 100), потому что изотоп фермия с массой 258, который должен получаться в результате захвата нейтронов, живет всего 0,3 миллисекунды. Вся цепочка последовательного захвата нейтронов разорвалась на ступени захвата 20-го нейтрона. Здесь же необходимо пройти более 60 ступеней. Нейтронный метод не пошел.

Попытка американских исследователей использовать другой способ - получить сверхтяжелые элементы в ядерных взрывах, т. е. в мощном импульсном потоке нейтронов, в конечном итоге привела к образованию того же изотопа 100-го элемента с массой 257.

Бесперспективность нейтронного метода привела к идее использовать принципиально иной способ синтеза сверхтяжелых элементов, который начал развиваться в середине 50-х годов - «тяжело-ядерный». Он заключается в том, что два тяжелых ядра сталкиваются друг с другом в надежде на то, что они сольются и как результат получится ядро суммарной массы. Для того, чтобы произошла такая реакция, одно из ядер необходимо разогнать до скорости примерно 0,1 скорости света. Эту функцию выполняют ускорители. То, что мы знаем сегодня о свойствах тяжелых элементов второй сотни, было получено с помощью ускорителей тяжелых ионов в реакциях этого типа.

Каковы свойства трансурановых элементов?

Если 92-элемент - уран живет миллиард лет, то тяжелое ядро 112-элемента живет всего 0,1 миллисекунды. Действительно, увеличение атомного номера на 20 единиц приводит к уменьшению времени жизни ядра более чем в 10 20 раз. Однако, «остров стабильности» расположен там, где ядра содержат значительно больше нейтронов. Поэтому надо двигаться в сторону более нейтронно-избыточных ядер. Это трудно осуществить, так как в стабильных нуклидах отношение числа протонов к числу нейтронов строго определено. Было решено использовать реакции, в которых большой нейтронный избыток изначально задан как в ядре материала мишени, который нарабатывается в ядерном реакторе, так и в ядре-снаряде, который в данном случае был выбран в качестве ядра кальция-48.

Кальций-48 - стабильный изотоп кальция, элемента с атомным номером 20. Кальция в природе много. Но изотоп кальция с массой 48 крайне редок. Его содержание в обычном кальции всего 0,18%. Выделить его из кальция - задача неимоверно трудная. Тем не менее, если бы нам удалось ускорить ионы кальция-48, то, облучая уран, плутоний или кюрий, мы могли бы пробраться в заветную область, где ожидается подъем стабильности, и там должны были бы почувствовать эффект резкого подъема времени жизни сверхтяжелых элементов.

В конкретном эксперименте была выбрана реакция, где в качестве исходного вещества использовался плутоний (Z = 94), его самый тяжелый изотоп с массой 244, а в качестве бомбардирующего иона изотоп кальция-48. Мы рассчитывали на то, что реакция слияния этих ядер приведет к образованию 114-элемента, который должен быть более устойчивым по сравнению с элементами, поученными ранее.

Для того, чтобы поставить подобный опыт, нужно было создать ускоритель с мощностью пучка кальция-48, превосходящую все известные ускорители в десятки раз. При этом он должен был дать высокую интенсивность ускоренных ионов и расходовать как можно меньше дорогостоящего кальция-48. Это потребовало длительных и напряженных поисков решения задачи. В конце концов решение было найдено и в течение 5 лет такой ускоритель в Дубне был создан. При очень малом расходе вещества (0,3 мг/час) была получена интенсивность пучка в несколько единиц на 10 12 ионов в сек. Теперь можно было ставить эксперимент в сто и в тысячу раз более чувствительный, чем это делалось ранее дубнинцами и их коллегами в других странах на протяжении последних 25 лет.

Суть самого эксперимента состояла в следующем. Получив пучок кальция, облучается мишень из плутония. Тяжелый изотоп плутония-244 был предоставлен Ливерморской Национальной Лабораторией (США). Если в результате процесса слияния двух ядер образуются атомы нового элемента, то они должны вылетать из мишени и вместе с пучком продолжать движение вперед. Здесь их надо отделить от ионов кальция-48 и других продуктов реакции. Эту функцию выполняет сепаратор (рис. 2), в котором присутствует поперечное электрическое поле. Поскольку скорости ядер разные, пучок утыкается в стопер, в то время как тяжелые ядра отдачи 114-элемента совершают криволинейную траекторию и в конце концов доходят до детектора. Детектор распознает тяжелое ядро и фиксирует его распад.

Что, собственно говоря, можно ожидать дальше? Если справедлива гипотеза о том, что существует «остров стабильности» в области сверхтяжелых элементов и эти ядра очень устойчивы относительно спонтанного деления, они должны испытывать другой тип распада - альфа-распад.

Иными словами, ядра на вершине и вблизи вершины этого острова, устойчивые к спонтанному делению, должны быть альфа-радиоактивными. Альфа-радиоактивное ядро, как известно, спонтанно выбрасывает альфа-частицу (ядро гелия), состоящую из двух протонов и двух нейтронов, переходя в дочернее ядро. Для выбранной реакции - это переход 114-го в 112-й элемент. Ядра 112-го элемента тоже должны испытывать альфа-распад и переходить в ядра 110-го элемента и т. д. Но по мере последовательных альфа-распадов мы все дальше и дальше отдаляемся от вершины стабильности и в конце концов попадем в море нестабильности, где преобладающим типом распада будет спонтанное деление. Для экспериментатора это весьма яркая картина: в результате последовательных альфа-распадов, каждый из которых оставляет в детекторе энергию около 10 МэВ, происходит деление, в котором сразу высвобождается энергия около 200 МэВ. На этом цепочка распадов обрывается.

Такую цепочку можно наблюдать, если справедлива теоретическая гипотеза. Действительно, в течение эксперимента, который продолжался непрерывно три месяца, ученые впервые наблюдали то, что ждали.

Рис. 3а. Цепочки последовательных распадов сверхтяжелых атомов с Z = 114 и 116, зарегистрированных в ядерных реакциях с ионами 48 Са. Для каждого распада указаны значения энергии, времени прихода сигнала и его позиционной координаты на поверхности детектора площадью 50 см².

После того, как ядро отдачи пришло в детектор, который измеряет его энергию, скорость и координаты места его остановки с высокой точностью, была зарегистрирована альфа-частица с энергией 9,87 МэВ через секунду после остановки. Интересно, что в самом тяжелом ядре, синтезированном ранее, это время занимало всего одну десятитысячную долю секунды. Здесь - секунда.

Затем, спустя 10,3 секунды (тоже долгое время), вылетела вторая альфа-частица с энергией 9,21 МэВ и затем, спустя 14,5 секунд, произошло спонтанное деление. Вся цепочка распадов заняла время около 0,5 минут.

Второе событие было такое же, как первое. Оба эти события совпадают друг с другом по 13-ти параметрам. Поэтому вероятность случайных совпадений сигналов в детекторе, имитирующих подобный распад, составляет всего 10 −16 .

В этом же эксперименте наблюдалось и другое событие, значительно более долгоживущее. Здесь уже распад исчисляется минутами и десятками минут.

Если отклониться в область ядер с дефицитом нейтронов, то спонтанное деление становится все более и более вероятным, что и было обнаружено (когда вместо мишени из плутония-244 использовался более легкий изотоп - плутоний-242). Это точно воспроизводит сценарий, который был предсказан теорией о том, что остров находится справа, среди ядер, обогащенных нейтронами.

Таким образом, синтезированные ядра-изотопы 114-элемента и их дочерние продукты альфа-распада, новые изотопы 112 и 110 элементов уже испытывают действия этих структурных сил, формирующих «остров стабильности» сверхтяжелых элементов. И несмотря на то, что они находятся на значительном расстоянии от вершины острова, тем не менее, их времена составляют минуты и десятки минут (рис. 4). Это примерно на 5 порядков повышает их стабильность по сравнению с изотопами тех же элементов, находящихся вдали от границы острова.

Уникальное вещество - кюрий-248 было получено на мощном реакторе НИИ Атомных Реакторов в г. Димитровграде. Наблюдение цепочки распадов 116-элемента было бы еще одним доказательством получения 114-элемента - в первом случае он был получен непосредственно при облучении плутониевой мишени; в этой же реакции в результате распада более тяжелого родителя.

Рис. 4. Карта нуклидов с указанием цепочек радиоактивного распада атомов, синтезированных в ядерных реакциях под действием ускоренных ионов 48 Са. Топографический фон демонстрирует силу структурных эффектов в ядре атома.

Такой эксперимент был поставлен недавно - и здесь ученые пошли на некоторый риск.

Если в реакции образуется 116-элемент, то после его альфа-распада должно быть получено ядро 114-элемента; иными словами, в этом опыте ученые должны были еще раз (уже третий) наблюдать кроме 116-элемента всю цепочку распада 114-элемента.

После вылета альфа-частицы от распада 116-элемента, ускоритель выключался, и выключалось все силовое оборудование в лаборатории для того, чтобы создать абсолютно бесфоновые условия. Действительно, после того, как тяжелое ядро отдачи пришло в детектор, спустя 47 миллисекунд, вылетела альфа-частица с энергией 10,56 МэВ, которая отключила все мощное оборудование. После этого в совершенно спокойных условиях наблюдался вылет еще одной альфа-частицы, затем другой и следом - спонтанное деление.

Если сравнить цепочку распадов после отключения ускорителя с тем, что наблюдалось для 114-элемента, то можно увидеть полное совпадение по всем параметрам (рис. 3b). Это действительно был распад 114-го элемента, а, стало быть, предыдущая альфа-частица относится к 116-му. Произошло это 19 июля 2000 года. В 2001 году опыт был продолжен и в результате были синтезированы еще 2 ядра 116 элемента.

Теперь можно сравнить предсказание теории и результаты, полученные в эксперименте. Для 116-го элемента согласно теории с увеличением числа нейтронов в ядре от 166 до 176 время жизни ядра должно было возрасти на 5 порядков. Эксперимент дал величину примерно 6 порядков. Для 114-го элемента картина выглядит таким же образом. При увеличении числа нейтронов в этом ядре от 164 до 174 период полураспада возрастает более чем на 6 порядков. Для 112-элемента избыток в 10 нейтронов также увеличивает стабильность ядра на 5–6 порядков. Такая же картина характерна для изотопов 110-элемента.

Это хорошее согласие с теоретической гипотезой. Кроме того, эксперимент показывает, что сверхтяжелые нуклиды в этой области более долгоживущие, чем это следовало из теории.

Следует обратить внимание на вершину «острова стабильности». Эта вершина может составлять миллионы лет. Она не дотягивает до возраста Земли, который составляет 4,5 миллиарда лет. Однако, если принять во внимание, что в эксперименте мы имеем превышение стабильности над расчетными значениями на отрогах «острова стабильности», то не исключено присутствие сверхтяжелых элементов в природе, в нашей системе, либо в космических лучах, т. е. в других системах. Там могут существовать сверхтяжелые элементы, время жизни которых будет исчисляться миллионами лет.

Важно еще одно обстоятельство: теперь таблица элементов пополнилась новыми 114 и 116 элементами. Эксперименты дали новое звучание известным ранее 112, 110, 108 элементам, поскольку увеличение нейтронов привело к существенному возрастанию времени их жизни. Это дает возможность изучать химические свойства этих элементов. Элементы 112-ый, 110-ый и 108-ой, которые живут минуты, стали вполне доступны для исследования их химических свойств методами современной радиохимии. Можно ставить опыты по проверке фундаментального Закона Менделеева относительно унификации свойств в колонках. Применительно к сверхтяжелым элементам мы должны считать, что 112-ый элемент - гомолог кадмия, ртути; 114-ый элемент - аналог олова, свинца и т. д. Пока это просто экстраполяция наших представлений на ранее неизвестные элементы. Фундаментальный Закон периодичности химических свойств элементов можно теперь проверять экспериментально.

Стабильные элементы заканчиваются свинцом и висмутом. Ядра этих атомов являются магическими, что определяет повышенную энергию связи нуклонов в ядре. Затем следует область радиоактивных элементов, среди которых торий и уран наиболее устойчивы. Их период полураспада сравним с возрастом нашей планеты. По мере продвижения в сторону более тяжелых элементов время жизни ядер резко уменьшается. Полуостров радиоактивных элементов имеет выраженные границы. Теория предсказывала, что за «полуостровом» будут следовать «острова стабильности». Они будут расположены в области очень тяжелых элементов, ядра которых обогащены нейтронами.

Попытки получить эти ядра в мощных потоках нейтронов не увенчались успехом. С другой стороны, в реакциях с тяжелыми ионами, начиная с 50-х годов, удалось синтезировать 12 искусственных элементов с атомными номерами более 100. Но в ядрах этих элементов не удалось получить избыток нейтронов, который позволил бы ответить на вопрос: кончается мир «полуостровом» радиоактивных ядер или за ним будет следовать «остров стабильности» еще более тяжелых - сверхтяжелых элементов.

Используя пучки ускоренных ионов изотопа кальция-48 и выбирая в качестве мишени искусственные элементы - тяжелые изотопы плутония и кюрия, полученные в мощных реакторах, ученым удалось подойти лишь к границам этого гипотетического «острова стабильности» и уже здесь обнаружить значительное повышение стабильности сверхтяжелых элементов. Опыты продолжаются, на очереди - 118 элемент.

Что же дальше? Достигнутый успех породил новые замыслы освоения открытой terra incognita. Прежде всего, хотелось бы получать ядра сверхтяжелых элементов (СТЭ) в больших количествах. Конечно, сам факт открытия нового элемента всего по двум наблюденным атомам впечатляет, но для более полного изучения требуется значительно большее количество. Необходимо создание принципиально новых, более эффективных экспериментальных установок. На проектные работы ушло полгода и в настоящее время в Лаборатории осуществляется проект создания Масс-Анализатора Сверхтяжелых Атомов (MASHA). Аналогов такой экспериментальной установки в мире нет. С вводом ее в действие ученые рассчитывают получать уже десятки атомов СТЭ и исследовать их свойства более широко. Реализуется также проект DRIBs, в котором два мощных ускорителя объединяются в единый комплекс, что позволит ускорять атомы радиоактивных изотопов, в частности олова-132. Это даст принципиально новые возможности синтеза СТЭ.

Минатом подключил к программе свои организации и выделил необходимые финансы (по 15 млн руб. ежегодно в течение 4 лет). Миннауки выделил специальный грант в размере 1 млн руб. От РАО ЕС было получено эксклюзивное право на выделение электроэнергии для питания ускорителей при проведении экспериментов. Американцы из Ливермора прислали бесплатно плутоний-244. Губернатор Московской области Б. В. Громов выделил Объединенному институту ядерных исследований из своего резерва средства для финансирования исследований по сверхтяжелым элементам (10 млн руб. в 2001 г. и 15 млн руб. в 2002 г.). Не вызывает сомнений, что интеллектуальные и технические ресурсы, накопленные в Дубне и других аналогичных центрах России, необходимо использовать для развития современных высокотехнологичных и наукоемких процессов, которые только и могут обеспечить в будущем конкурентоспособность российской продукции на мировом рынке.

Библиография

Bohr N., Wheeler J. The Mechanism of Nuclear Fission//Phys. Rev. 1939. № 56.

Flerov G. N., Petrzhak K. A. Spontaneous fission of 238 U//Phys. Rev. 1940. № 58; J. Phys. USSR. 1940. № 3.

Oganessian Yu. Ts., Yeremin A. V., Popeko A. G. et al. Synthesis of nuclei of superheavy element 114 in reaction induced by 48 Ca//Nature. 1999. № 400.

Oganessian Yu. Ts., Utyonkov V. K., Lobanov Yu. V. et al. The synthesis of superheavy nuclei in the 48 Ca + 244 Pu reaction//Phys. Rev. Lett. 1999. № 83.

Oganessian Yu. Ts., Yeremin A. V., Popeko A. G. et al. Observation of the decay of 292 116//Phys. Rev. 2001. C 63. 011301/1–011301/2.

При энергии ионов криптона вблизи кулоновского барьера наблюдалось три случая образования 118 элемента . Ядра 293 118 имплантировались в кремниевый детектор и наблюдалась цепочка шести последовательных α-распадов, которая заканчивалась на изотопе 269 Sg. Сечение образования 118 элемента составляло ~2 пикобарна. Период полураспада изотопа 293 118 равен 120 мс. На рис. 3 показана цепочка последовательных α-распадов изотопа 293 118 и приведены периоды полураспада дочерних ядер, образующихся в результате α-распадов.

На основе различных теоретических моделей были рассчитаны распадные характеристики сверхтяжелых ядер. Результаты одного из таких расчетов показаны на рис. 4. Приведены периоды полураспада четно-четных сверхтяжелых ядер относительно спонтанного деления (а), α-распада (б), β-распада (в) и для всех возможных процессов распада (г). Наиболее устойчивым ядром по отношению к спонтанному делению (рис. 4а) является ядро с Z = 114 и N = 184. Для него период полураспада по отношению к спонтанному делению ~10 16 лет. Для изотопов 114-го элемента, отличающихся от наиболее устойчивого на 6-8 нейтронов, периоды полураспада уменьшаются на 10-15 порядков. Периоды полураспада по отношению к α-распаду приведены на рис. 4б. Наиболее устойчивое ядро расположено в области Z < 114 и N = 184 (T 1/2 = 10 15 лет). Для изотопа 298 114 период полураспада составляет около 10 лет.

Стабильные по отношению к β-распаду ядра показаны на рис. 4в темными точками. На рис. 4г приведены полные периоды полураспада. Для четно-четных ядер, расположенных внутри центрального контура, составляют ~10 5 лет. Таким образом, после учета всех типов распада оказывается, что ядра в окрестности Z = 110 и N = 184 образуют "остров стабильности". Ядро 294 110 имеет период полураспада около 10 9 лет. Отличие величины Z от предсказываемого оболочечной моделью магического числа 114 связано с конкуренцией между делением (относительно которого ядро с Z = 114 наиболее стабильно) и α-распадом (относительно которого устойчивы ядра с меньшими Z). У нечетно-четных и четно-нечетных ядер периоды полураспада по отношению к α-распаду и спонтанному делению увеличиваются, а по отношению к β-распаду уменьшаются. Следует отметить, что приведенные оценки сильно зависят от параметров, использованных в расчетах, и могут рассматриваться лишь как указания на возможность существования сверхтяжелых ядер, имеющих времена жизни достаточно большие для их экспериментального обнаружения.

Результаты еще одного расчета равновесной формы сверхтяжелых ядер и их периодов полураспада показаны на рис. 5, 11.11 . На рис. 11.10 показана зависимость энергии равновесной деформации от количества нейтронов и протонов для ядер с Z = 104-120. Энергия деформации определяется как разность энергий ядер в равновесной и сферической форме. Из этих данных видно, что в области Z = 114 и N = 184 должны располагаться ядра, имеющие в основном состоянии сферическую форму. Все обнаруженные на сегодня сверхтяжелые ядра (они показаны на рис. 5 темными ромбами) деформированы. Светлыми ромбами показаны ядра стабильные по отношению к β-распаду. Эти ядра должны распадаться в результате α-распада или деления. Основным каналом распада должен быть α-распад.

Периоды полураспада для четно-четных β-стабильных изотопов показаны на рис. 6. Согласно этим предсказаниям для большинства ядер ожидаются периоды полураспада гораздо большие, чем наблюдались для уже обнаруженных сверхтяжелых ядер (0.1-1 мс). Так например, для ядра 292 110 предсказывается время жизни ~ 51 год.
Таким образом, согласно современным микроскопическим расчетам, стабильность сверхтяжелых ядер резко возрастает по мере приближения к магическому числу по нейтронам N = 184. До недавнего времени единственным изотопом элемента с Z = 112 был изотоп 277 112, имеющий период полураспада 0.24 мс. Более тяжелый изотоп 283 112 был синтезирован в реакции холодного слияния 48 Ca + 238 U. Время облучения 25 дней. Полное число ионов 48 Ca на мишени - 3.5·10 18 . Зарегистрированы два случая, которые были интерпретированы как спонтанное деление образовавшегося изотопа 283 112. Для периода полураспада этого нового изотопа получена оценка T 1/2 = 81 c. Таким образом видно, что увеличение числа нейтронов в изотопе 283 112 по сравнению с изотопом 277 112 на 6 единиц увеличивает время жизни на 5 порядков.

На рис. 7 показано измеренное время жизни изотопов сиборгия Sg (Z = 106) в сравнении с предсказаниями различных теоретических моделей . Обращает на себя внимание уменьшение почти на порядок времени жизни изотопа с N = 164 по сравнению с временем жизни изотопа с N = 162.
Наибольшего приближения к острову стабильности можно достичь в реакции 76 Ge + 208 Pb. Сверхтяжелое почти сферическое ядро может образоваться в реакции слияния с последующим испусканием γ-квантов или одного нейтрона. Согласно оценкам образующееся ядро 284 114 должно распадаться с испусканием α-частиц с периодом полураспада ~ 1 мс. Дополнительную информацию о заполненности оболочки в районе N = 162 можно получить, изучая α-распады ядер 271 108 и 267 106. Для этих ядер предсказываются периоды полураспада 1 мин. и 1 час. Для ядер 263 106, 262 107, 205 108, 271,273 110 ожидается проявление изомерии, причиной которой является заполнение подоболочек с j = 1/2 и j = 13/2 в районе N = 162 для ядер деформированных в основном состоянии.

На рис. 8 показаны экспериментально измеренные функции возбуждения реакции образования элементов Rf (Z = 104) и Hs (Z = 108)для реакций слияния налетающих ионов 50 Ti и 56 Fe с ядром-мишенью 208 Pb.
Образовавшееся компаунд-ядро охлаждается испусканием одного или двух нейтронов. Информация о функциях возбуждения реакций слияния тяжелых ионов особенно важны для получения сверхтяжелых ядер. В реакции слияния тяжелых ионов необходимо точно сбалансировать действие кулоновских сил и сил поверхностного натяжения. Если энергия налетающего иона недостаточно большая, то расстояние минимального сближения будет недостаточно для слияния двойной ядерной системы. Если энергия налетающей частицы будет слишком большой, то образовавшаяся в результате система будет иметь большую энергию возбуждения и с большой вероятностью произойдет развал ее на фрагменты. Эффективно слияние происходит в довольно узком диапазоне энергий сталкивающих частиц.

Реакции слияния с испусканием минимального числа нейтронов (1-2) представляют особый интерес, т.к. в синтезируемых сверхтяжелых ядрах желательно иметь максимально большое отношение N/Z. На рис. 9 показан потенциал слияния для ядер в реакции
64 Ni + 208 Pb 272 110. Простейшие оценки показывают, что вероятность туннельного эффекта для слияния ядер составляет ~ 10 -21 , что существенно ниже наблюдаемой величины сечения. Это можно объяснить следующим образом. На расстоянии 14 Фм между центрами ядер первоначальная кинетическая энергия 236.2 МэВ полностью компенсируется кулоновским потенциалом. На этом расстоянии находятся в контакте только нуклоны, расположенные на поверхности ядра. Энергия этих нуклонов мала. Следовательно существует высокая вероятность того, что нуклоны или пары нуклонов покинут орбитали в одном ядре и переместятся на свободные состояния ядра-партнера. Передача нуклонов от налетающего ядра ядру-мишени особенно привлекательна в случае, когда в качестве мишени используется дважды магический изотоп свинца 208 Pb. В 208 Pb заполнены протонная подоболочка h 11/2 и нейтронные подоболочки h 9/2 и i 13/2 . Вначале передача протонов стимулируется силами притяжения протон-протон, а после заполнения подоболочки h 9/2 - силами притяжения протон-нейтрон. Аналогично нейтроны перемещаются в свободную подоболочку i 11/2 , притягиваясь нейтронами из уже заполненной подоболочки i 13/2 . Из-за энергии спаривания и больших орбитальных моментов передача пары нуклонов более вероятна, чем передача одного нуклона. После передачи двух протонов от 64 Ni 208 Pb кулоновский барьер уменьшается на 14 МэВ, что способствует более тесному контакту взаимодействующих ионов и продолжению процесса передачи нуклонов.
В работах [В.В. Волков. Ядерные реакции глубоконеупругих передач. М. Энергоиздат, 1982; В.В. Волков. Изв. АН СССР серия физич., 1986 т. 50 с. 1879] был детально исследован механизм реакции слияния. Показано, что уже на стадии захвата формируется двойная ядерная система после полной диссипации кинетической энергии налетающей частицы и нуклоны одного из ядер постепенно оболочка за оболочкой передаются другому ядру. То есть оболочечная структура ядер играет существенную роль в образовании компаунд-ядра. На основе этой модели удалось достаточно хорошо описать энергию возбуждения составных ядер и сечение образования 102-112 элементов в реакциях холодного синтеза.
В Лаборатории ядерных реакций им. Г.Н. Флерова (Дубна) синтезирован элемент с Z = 114. Была использована реакция

Идентификация ядра 289 114 проводилась по цепочке α-распадов. Экспериментальная оценка периода полураспада изотопа 289 114 ~30 с. Полученный результат находится в хорошем согласии с ранее выполненными расчетами .
При синтезе 114 элемента в реакции 48 Cu + 244 Pu максимальный выход дает канал с испарением трех нейтронов. При этом энергии возбуждения составного ядра 289 114 была 35 МэВ.
Теоретически предсказываемая последовательность распадов, происходящих с ядром 296 116, образующемся в реакции , приведена на рис.10.



Рис. 10. Схема распада ядра 296 116

Ядро 296 116 охлаждается испусканием четырех нейтронов и превращается в изотоп 292 116, который далее с 5% -ой вероятностью в результате двух последовательных e-захватов превращается в изотоп 292 114. В результате α-распада (T 1/2 = 85 дней) изотоп 292 114 превращается в изотоп 288 112. Образование изотопа 288 112 происходит и по каналу

Конечное ядро 288 112, образующееся в результате обеих цепочек, имеет период полураспада около 1 часа и распадается в результате спонтанного деления. Примерно с 10%-ой вероятностью в результате α-распада изотопа 288 114 может образовываться изотоп 284 112. Приведенные выше периоды и каналы распада получены расчетным путем.
Анализируя различные возможности образования сверхтяжелых элементов в реакциях с тяжелыми ионами нужно учитывать следующие обстоятельства.

  1. Необходимо создать ядро с достаточно большим отношением числа нейтронов к числу протонов. Поэтому в качестве налетающей частицы надо выбирать тяжелые ионы, имеющие большое N/Z.
  2. Необходимо, чтобы образующееся компаунд-ядро имело малую энергию возбуждения и небольшую величину момента количества движения, так как в противном случае будет снижаться эффективная высота барьера деления.
  3. Необходимо, чтобы образующееся ядро имело форму близкую к сферической, так как даже небольшая деформация будет приводить к быстрому делению сверхтяжелого ядра.

Весьма перспективным методом получения сверхтяжелых ядер являются реакции типа 238 U + 238 U, 238 U + 248 Cm, 238 U + 249 Cf, 238 U + 254 Es. На рис. 11 приведены оценочные сечения образования трансурановых элементов при облучении ускоренными ионами 238 U мишеней из 248 Cm, 249 Cf и 254 Es. В этих реакциях уже получены первые результаты по сечениям образования элементов с Z > 100. Для увеличения выходов исследуемых реакций толщины мишеней выбирались таким образом, чтобы продукты реакции оставались в мишени. После облучения из мишени сепарировались отдельные химические элементы. В полученных образцах в течение нескольких месяцев регистрировались продукты α-распада и осколки деления. Данные, полученные с помощью ускоренных ионов урана, ясно указывают на увеличение выхода тяжелых трансурановых элементов по сравнениюю с более легкими бомбардирующими ионами. Этот факт чрезвычайно важен для решения проблемы синтеза сверхтяжелых ядер. Несмотря на трудности работы с соответствующими мишенями прогнозы продвижения к большим Z выглядят довольно оптимистично.

Продвижение в область сверхтяжелых ядер в последние годы оказалось ошеломляюще впечатляющим. Однако, пока все попытки обнаружить остров стабильности не увенчались успехом. Поиск его интенсивно продолжается.

На исходе второго тысячелетия академик Виталий Лазаревич Гинзбург составил список из тридцати проблем физики и астрофизики, которые он считал наиболее важными и интересными (см. «Наука и жизнь» № 11, 1999 г.). В этом списке под № 13 указана задача отыскания сверхтяжёлых элементов. Тогда, 12 лет назад, академик с огорчением отметил, что «существование в космических лучах долгоживущих (речь идёт о миллионах лет) трансурановых ядер пока подтверждено не было». Сегодня следы таких ядер обнаружены. Это даёт надежду открыть наконец остров Стабильности сверхтяжёлых ядер, существование которого предсказал когда-то физик-ядерщик Георгий Николаевич Флёров.

Вопрос, существуют ли элементы тяжелее урана-92 (238 U - его стабильный изотоп), долгое время оставался открытым, так как в природе они не наблюдались. Считалось, что стабильных элементов с атомным номером больше 180 нет: мощный положительный заряд ядра разрушит внутренние уровни электронов тяжёлого атома. Однако довольно скоро выяснилось, что стабильность элемента определяется устойчивостью его ядра, а не оболочки. Стабильны ядра с чётным числом протонов Z и нейтронов N, среди которых особенно выделяются ядра с так называемым магическим числом протонов или нейтронов - 2, 8, 20, 28, 50, 82, 126 - это, например, олово, свинец. И наиболее стабильны «дважды магические ядра», у которых число и нейтронов, и протонов - магическое, скажем, гелий и кальций. Таков изотоп свинца 208 Pb: у него Z = 82, N = 126. Устойчивость элемента чрезвычайно сильно зависит от соотношения числа протонов и нейтронов в его ядре. Например, свинец со 126-ю нейтронами стабилен, а другой его изотоп, в ядре которого на один нейтрон больше, распадается за три с лишним часа. Но, отмечал В. Л. Гинзбург, теория предсказывает, что некий элемент Х с числом протонов Z = 114 и нейтронов N = 184, то есть с массовым атомным числом А = Z + N = 298, должен жить примерно 100 миллионов лет.

Сегодня искусственно получено множество элементов вплоть до 118-го включительно - 254 Uuo. Это самый тяжёлый неметалл, предположительно - инертный газ; его условные названия унуноктий (оно образовано из корней латинских числительных - 1, 1, 8), эка-радон и московий Mw. Все искусственные элементы когда-то существовали на Земле, но с течением времени распались. Например, плутоний-94 имеет 16 изотопов, и только у 244 Pu период полураспада Т ½ = 7,6·10 7 лет; у нептуния-93 12 изотопов и у 237 Np Т ½ = 2,14·10 6 лет. Эти самые длительные периоды полураспада среди всех изотопов данных элементов гораздо меньше возраста Земли - (4,5–5,5)·10 9 . Ничтожные следы нептуния, которые находят в урановых рудах, - продукты ядерных реакций под действием нейтронов космического излучения и спонтанного деления урана, а плутония - следствие бета-распада нептуния-239.

Элементы, пропавшие за время существования Земли, получают двумя способами. Во-первых, в ядро тяжёлого элемента можно вогнать лишний нейтрон. Там он претерпевает бета-распад, образуя протон, электрон и электронное антинейтрино: n 0 → p + e – + v e . Заряд ядра увеличится на единицу - возникнет новый элемент. Так получали искусственные элементы вплоть до фермия-100 (его изотоп 257 Fm имеет период полураспада 100 лет).

Ещё более тяжёлые элементы создают в ускорителях, которые разгоняют и сталкивают ядра, например золота (см. «Наука и жизнь» № 6, 1997 г.). Именно так в лаборатории ядерных реакций Объединённого института ядерных исследований (ОИЯИ, г. Дубна) и получили 117-й и 118-й элементы. Причём теория предсказывает, что далеко за пределами известных ныне тяжёлых радиоактивных элементов должны существовать стабильные сверхтяжёлые ядра. Российский физик Г. Н. Флёров изобразил систему элементов в виде символического архипелага, где стабильные элементы окружены морем короткоживущих изотопов, которые, возможно, так никогда и не будут обнаружены. На главном острове архипелага высятся пики наиболее стабильных элементов - Кальция, Олова и Свинца, за проливом Радиоактивности лежит остров Тяжёлых ядер с пиками Урана, Нептуния и Плутония. А ещё дальше должен располагаться таинственный остров Стабильности сверхтяжёлых элементов, подобных уже упомянутому - Х-298.

Несмотря на все успехи экспериментальной и теоретической физики, остаётся открытым вопрос: существуют ли в природе сверхтяжёлые элементы, или же они - чисто искусственные, рукотворные вещества, подобные синтетическим материалам - капрону, нейлону, лавсану, - природой никогда не создававшимся?

Условия для образования таких элементов в природе есть. Они создаются в недрах пульсаров и при взрывах сверхновых звёзд. Потоки нейтронов в них достигают огромной плотности - 10 38 n 0 /м 2 и способны порождать сверхтяжёлые ядра. Они разлетаются в космосе в потоке межгалактических космических лучей, но их доля чрезвычайно мала - всего несколько частиц на квадратный метр в год. Поэтому возникла мысль использовать природный детектор-накопитель космического излучения, в котором сверхтяжёлые ядра должны оставить специфический, легко узнаваемый след. Такими детекторами с успехом послужили метеориты.

Метеорит - кусок породы, вырванный какой-то космической катастрофой из материнской планеты, - путешествует в космосе сотни миллионов лет. Его непрерывно «обстреливают» космические лучи, которые на 90% состоят из ядер водорода (протонов), на 7% - из ядер гелия (двух протонов) и на 1% - из электронов. На оставшиеся 2% приходятся другие частицы, среди которых могут быть и сверхтяжёлые ядра.

Исследователи из Физического института им. П. Н. Лебедева (ФИАН) и Института геохимии и аналитической химии им. В. И. Вернадского (ГЕОХИ РАН) изучают два палласита - железоникелиевые метеориты с вкраплениями оливина (группа полупрозрачных минералов, в которых к двуокиси кремния SiO 4 присоединены в разных пропорциях Mg 2 , (Mg, Fe) 2 и (Mn, Fe) 2 ; прозрачный оливин называется хризолитом). Возраст этих метеоритов - 185 и 300 миллионов лет.

Тяжёлые ядра, пролетая сквозь кристалл оливина, повреждают его решётку, оставляя в ней свои следы - треки. Они становятся видны после химической обработки кристалла - травления. А поскольку оливин полупрозрачен, треки эти можно наблюдать и изучать в микроскоп. По толщине трека, его длине и форме можно судить о заряде и атомной массе ядра. Исследования сильно осложняет то, что кристаллы оливина имеют размеры порядка нескольких миллиметров, а трек тяжёлой частицы гораздо длиннее. Поэтому о величине её заряда приходится судить по косвенным данным - скорости травления, уменьшению толщины трека и пр.

Работы по отысканию следов сверхтяжёлых частиц с острова стабильности назвали «Проект Олимпия». В рамках этого проекта получены сведения примерно о шести тысячах ядер с зарядом более 55 и трёх ультратяжёлых ядрах, заряды которых лежат в интервале от 105 до 130. Все характеристики треков этих ядер измерены комплексом высокоточной аппаратуры, созданным в ФИАНе. Комплекс в автоматическом режиме распознаёт треки, определяет их геометрические параметры и, экстраполируя данные измерений, находит предположительную длину трека до его остановки в массиве оливина (напомним, что реальный размер его кристалла - несколько миллиметров).

Полученные экспериментальные результаты подтверждают реальность существования в природе стабильных сверхтяжёлых элементов.

Работы велись в Лаборатории ядерных реакций (ЛЯР) им. Г.Н. Флёрова дубненского Объединенного института ядерных исследований (ОИЯИ) успешно. Свойства 117-го и ранее синтезированных в Дубне элементов N 112-116 и 118 являются прямым доказательством существования так называемого "острова стабильности" сверхтяжелых элементов, предсказанного теоретиками еще в 60-е годы прошлого века и значительно расширяющего пределы таблицы Менделеева. Редакции "Известий" об уникальном эксперименте еще в марте сообщил руководитель ЛЯР академик Юрий Оганесян, но разрешение на публикацию дал только сейчас. О сути эксперимента обозревателю Петру Образцову рассказал автор открытия академик Юрий Оганесян.

известия: Чем вызван интерес ученых к синтезу сверхтяжелых элементов, которые и существуют-то ничтожно малое время?

юрий оганесян: После открытия в 1940-1941 годах первых искусственных элементов - нептуния и плутония - вопрос о пределах существования элементов стал исключительно интересным для фундаментальной науки о строении материи. К концу прошлого века были открыто 17 искусственных элементов и обнаружено, что их ядерная стабильность резко уменьшается с увеличением атомного номера. При переходе от 92-го элемента - урана - к 102-му элементу - нобелию период полураспада ядра уменьшается на 16 порядков: от 4,5 млрд лет до нескольких секунд. Поэтому считалось, что продвижение в область еще более тяжелых элементов приведет к пределу их существования, по существу обозначит границу существования материального мира. Однако в середине 60-х годов теоретиками неожиданно была выдвинута гипотеза о возможном существовании сверхтяжелых атомных ядер. По расчетам, время жизни ядер с атомными номерами 110-120 должно было существенно возрастать по мере увеличения в них числа нейтронов. Согласно новым представлениям они образуют обширный "остров стабильности" сверхтяжелых элементов, что существенно расширяет границы таблицы элементов.
и: Удалось ли это подтвердить экспериментально?

оганесян: В 1975-1996 годах физикам Дубны, Дармштадта (GSI, Германия), Токио (RIKEN) и Беркли (LBNL, США) удалось исследовать эти реакции и синтезировать шесть новых элементов. Наиболее тяжелые элементы 109-112 были получены впервые в GSI и повторены в RIKEN. Но периоды полураспада наиболее тяжелых ядер, полученных в этих реакциях, составляли всего лишь десятитысячные или даже тысячные доли секунды. Гипотеза о существовании сверхтяжелых элементов впервые получила экспериментальное подтверждение в Дубне, в исследованиях, проводимых нашей группой в сотрудничестве с учеными из Национальной лаборатории им. Лоуренса в Ливерморе (США). Нам удалось кардинально изменить подход к синтезу сверхтяжелых ядер, например, путем обстреливания мишени из искусственного элемента берклия (N 97) пучком снаряда из исключительно редкого и дорогого изотопа кальция (N 20) с массой 48. При слиянии ядер получается элемент N 117 (97 + 20 = 117). Результаты превзошли даже самые оптимистичные ожидания. В 2000-2004 годах, практически в течение пяти лет, именно в таких реакциях впервые были синтезированы сверхтяжелые элементы с атомными номерами 114, 116 и 118.

и: А какой именно научный вклад внесли американские ученые?

оганесян: В ядерной реакции с пучком кальция 117-й элемент может быть получен только с использованием мишени из искусственного элемента берклия. Период полураспада этого изотопа составляет всего 320 дней. Из-за короткого времени жизни наработку берклия в требуемом количестве (20-30 миллиграммов) необходимо вести в реакторе с очень высокой плотностью потока нейтронов. Такая задача по плечу только изотопному реактору Национальной лаборатории США в Ок-Ридже. Кстати, именно в этой лаборатории был впервые произведен плутоний для американской атомной бомбы. Поскольку с момента производства берклия его количество убывает вдвое через 320 дней, необходимо было все работы вести в высоком темпе. И не только в лабораториях, но и в официальных структурах России и США, связанных с сертификацией необычного материала, транспортировкой высокорадиоактивного продукта наземным и воздушным транспортом, техникой безопасности и так далее.

и: Достойно приключенческой повести. А что было дальше?

оганесян: В начале июня 2009 года контейнер прибыл в Москву. Из этого вещества в НИИ атомных реакторов (г. Димитровград) была изготовлена мишень в виде тончайшего слоя берклия (300 нанометров), нанесенного на тонкую титановую фольгу; в июле мишень была доставлена в Дубну. К этому моменту в ЛЯР все подготовительные работы были завершены, и началось непрерывное облучение мишени интенсивным пучком кальция. Уже в первом облучении мишени продолжительностью 70 дней нам сопутствовала удача: детекторы пять раз зарегистрировали картину образования и распада ядер 117-го элемента. Как и ожидалось, ядра этого элемента трансформировались в ядра 115-го элемента, 115-й элемент превращался в 113-й, а затем 113-й элемент переходил в 111-й. А 111-й элемент распадался с периодом полураспада 26 секунд. В ядерном масштабе это огромное время! Теперь таблица Менделеева пополнилась еще одним из самых тяжелых элементов с атомным номером 117.

и: Наших читателей, естественно, заинтересует, какое практическое применение может иметь ваше открытие.

оганесян: Сейчас, конечно, никакого, ведь получено всего несколько атомов элемента N 117. С фундаментальной точки зрения представления о нашем мире теперь должны сильно измениться. Более того, если синтезируются элементы с огромным периодом полураспада, то не исключено, что они существуют и в природе и могли "дожить" до нашего времени с момента образования Земли - 4,5 млрд лет. И эксперименты по их поиску нами ведутся, в глубине Альпийских гор стоит наша установка.

и: Вопрос из другой плоскости. Как вы считаете, почему очевидные успехи в ядерной физике за последние лет 20 так и не были отмечены Нобелевскими премиями?

оганесян: Физика - большая. Видимо, для членов Нобелевского комитета более интересны другие области этой науки. А достойных ученых действительно немало. Кстати, должен назвать участников нашего эксперимента: Национальная лаборатория в Ок-Ридже (проф. Джеймс Роберто), Университет им. Вандербильта (проф. Джозеф Гамильтон), Национальная лаборатория им. Лоуренса в Ливерморе (Доун Шонесси), НИИ атомных реакторов, г. Димитровград (Михаил Рябинин) и Лаборатория ядерных реакций ОИЯИ (руководитель Юрий Оганесян).

От редакции. Временно элемент N 117 получит название "один-один-семь" по-латыни, то есть унунсептий. Группа академика Юрия Оганесяна - авторы открытия - имеет полное право дать настоящее имя этому элементу, а также открытым ими элементам N 114-116 и 118. В "Неделе" от 26 марта мы предложили читателям представить свои предложения по наименованию "наших" элементов. Пока разумным представляется только "курчатовий" для одного из этих элементов. Конкурс продолжается.

А. Левин

На пути к острову стабильности

Ученые занимаются новейшей версией алхимического промысла уже семь десятков лет и немало в ней преуспели: список официально признанных искусственных элементов, имена которых формально утверждены Международным союзом теоретической и прикладной химии (ИЮПАК), включает 19 позиций.

Он открывается известным с 1940 года 93-м элементом Периодической системы - нептунием и заканчивается 111-м - рентгением, впервые изготовленным в 1994 году. В 1996 и 1998 годах были получены элементы с номерами 112 и 114. Окончательных имен они еще не обрели, а временные, закрепленные за ними до решения бюро ИЮПАК, звучат ужасно - унунбий и унунквадий. В 2004 году появились сообщения о синтезе 113-го и 115-го элементов, пока что наделенных столь же труднопроизносимыми названиями. Впрочем, в них есть своя логика, это просто порядковые номера элементов, закодированные с помощью латинских названий однозначных чисел. Например, унунбий (ununbium) расшифровывается как «один-один-два».

Прошлой осенью мировую прессу облетели сообщения об абсолютно достоверном получении еще одного сверхтяжелого элемента, 118-го. Надежность этих результатов подчеркивалась отнюдь не случайно. Дело в том, что впервые такие анонсы появились гораздо раньше - в июне 1999 года. Однако позднее сотрудники американской Ливерморской лаборатории имени Лоуренса, выступившие с заявкой на это открытие, были вынуждены от нее отказаться. Выяснилось, что данные, на которых она базировалась, были сфабрикованы одним из экспериментаторов, болгарином Виктором Ниновым. В 2002 году это вызвало немалый скандал. В том же году ученые из Ливермора во главе с Кентоном Муди вместе с российскими коллегами из Объединенного института ядерных исследований в Дубне, возглавляемыми Юрием Оганесяном, возобновили эти попытки, используя другую цепочку ядерных реакций. Эксперименты были завершены лишь через три года, и вот они-то привели уже к гарантированному синтезу 118-го элемента - правда, в количестве всего лишь трех ядер. Эти результаты представлены в статье с двадцатью российскими и десятью американскими подписями, которая 9 октября 2006 года появилась в журнале Physical Review С.

О методах получения сверхтяжелых искусственных элементов и о совместной работе групп Оганесяна и Муди поговорим позже. А пока что попробуем ответить на не столь уж наивный вопрос: почему ядерные физики и химики с таким упорством ведут синтез все новых и новых элементов с трехзначными номерами в Периодической системе? Эти работы требуют сложного и дорогого оборудования и многих лет интенсивных исследований - а что в итоге? Совершенно бесполезные нестабильные экзотические ядра, которые к тому же можно пересчитать по пальцам. Конечно, специалистам интересно заниматься каждым таким ядром просто в силу его уникальности и новизны для науки - скажем, изучать его радиоактивные распады, энергетические уровни и геометрическую форму. За такие открытия подчас дают Нобелевские премии, но все же - стоит ли игра свеч? Что обещают эти исследования если не технологии, то хотя бы фундаментальной науке?

НЕМНОГО ЭЛЕМЕНТАРНОЙ ФИЗИКИ
Прежде всего напомним, что ядра всех без исключения элементов, кроме водорода, сложены из частиц двух видов - положительно заряженных протонов и не несущих электрического заряда нейтронов (ядро водорода - это единичный протон). Так что все ядра заряжены положительно, причем заряд ядра определяется числом его протонов. Это же число задает и номер элемента в Периодической системе. С первого взгляда это обстоятельство может показаться странным. Создатель этой системы Д. И. Менделеев упорядочивал элементы на основе их атомных весов и химических свойств, а об атомных ядрах наука тогда вообще не подозревала (к слову, в 1869 году, когда он открыл свой периодический закон, было известно всего лишь 63 элемента). Сейчас мы знаем (а Дмитрий Иванович узнать не успел), что химические свойства зависят от структуры электронного облака, окружающего атомное ядро. Как известно, заряды протона и электрона равны по абсолютной величине и обратны по знаку. Поскольку атом в целом электронейтрален, число электронов в точности равно числу протонов - вот искомая связь и обнаружена. Периодичность химических свойств объясняется тем, что электронное облако состоит из отдельных «слоев» - оболочек. Химические взаимодействия между атомами в первую очередь обеспечиваются электронами внешних оболочек. По мере заполнения каждой новой оболочки химические свойства получающихся элементов образуют плавный ряд, а затем емкость оболочки кончается, и начинает заполняться следующая - отсюда и периодичность. Но тут уж мы вступаем в дебри атомной физики, а она нас сегодня не интересует, нам бы успеть поговорить о ядрах.

Атомные ядра принято называть «нуклидами», от латинского nucleus - ядро. Отсюда же общее название для протонов и нейтронов - «нуклоны». Ядра с одинаковым числом протонов, но разным - нейтронов отличаются по массе, однако их электронные «одежды» совершенно Мария Кюри одинаковы. Это означает, что атомы, отличающиеся друг от друга только числом нейтронов, химически неразличимы, и их надо считать разновидностями одного и того же элемента. Такие элементы называют изотопами (это название в 1910 году предложил английский радиохимик Фредерик Содди, который произвел его от греческих слов isos - равный, одинаковый и topos - место). Изотопы принято обозначать названием или химическим символом элемента, сопровождающимся обозначением общего количества ядерных нуклонов (этот показатель называют «массовым числом»).

Все встречающиеся в природе элементы имеют по несколько изотопов. Скажем, у водорода помимо основной однопротонной версии имеется тяжелая - дейтерий и сверхтяжелая - тритий (исторически сложилось так, что изотопы водорода имеют собственные названия). Ядро дейтерия состоит из протона и нейтрона, трития - из протона и двух нейтронов. Второй по счету элемент Периодической системы, гелий, имеет два природных изотопа: весьма редкий гелий-3 (два протона, один нейтрон) и куда более распространенный гелий-4 (два протона и два нейтрона). Элементы чисто лабораторного происхождения тоже, как правило, синтезируют в разных изотопных вариантах.

Отнюдь не все атомные ядра стабильны. Некоторые из них могут самопроизвольно испускать частицы и превращаться в другие нуклиды. Это явление в 1896 году открыл французский физик Антуан Анри Беккерель, который обнаружил, что уран испускает неизвестное науке проникающее излучение. Два года спустя Фредерик Кюри и его жена Мария выявили аналогичное излучение у тория, а затем открыли два нестабильных элемента, еще не вошедших в Периодическую систему - радий и полоний. Мария Кюри назвала загадочный с точки зрения тогдашней науки феномен радиоактивностью. В 1899 году англичанин Эрнест Резерфорд обнаружил, что уран испускает два вида радиации, которые он наименовал альфа- и бета-лучами. Еще через год француз Поль Виллар заметил у урана излучение третьего типа, которое тот же Резерфорд обозначил третьей буквой греческой алфавита - гамма. Позднее ученые открыли и другие виды радиоактивности.

Как альфа-, так и гамма-излучение возникает в результате внутренних перестроек ядра. Альфа-лучи - это просто потоки ядер основного изотопа гелия, гелия-4. Когда радиоактивный нуклид испускает альфа-частицу, его массовое число уменьшается на четыре единицы, а заряд - на две. В результате элемент сдвигается в таблице Менделеева на две клетки влево. Альфа-распад фактически является частным случаем целого семейства распадов, в результате которых ядро перестраивается и теряет нуклоны или группы нуклонов. Существуют распады, при которых ядро испускает единичный протон, или единичный нейтрон, или даже более массивную группу нуклонов, нежели альфа-частица (такие группы называют «тяжелыми кластерами»). А вот гамма-лучи невещественны - это электромагнитные кванты очень высокой энергии. Так что чистый гамма-распад - это, строго говоря, вообще не радиоактивность, поскольку и после него остается ядро с тем же количеством протонов и нейтронов, только находящееся в состоянии со сниженной энергией.

Бета-радиоактивность вызвана ядерными превращениями совершенно иного рода. Частицы, которые Резерфорд назвал бета-лучами, были попросту электронами, что выяснилось очень быстро, Это обстоятельство долго озадачивало ученых, поскольку все попытки найти электроны внутри ядер ни к чему не приводили. Лишь в 1934 году Энрико Ферми догадался, что бета-электроны - результат не внутриядерных перестроек, а взаимных превращений нуклонов. Бета-радиоактивность уранового ядра объясняется тем, что один из его нейтронов превращается в протон и электрон. Бывает бета-радиоактивность иного рода: протон превращается в позитрон и нейтрон (читатель заметит, что при обоих превращениях суммарный электрический заряд сохраняется). При бета-распаде также испускаются сверхлегкие и сверхпроникающие нейтральные частицы - нейтрино (точнее, позитронный бета-распад приводит к рождению собственно нейтрино, а электронный - антинейтрино). При электронном бета-распаде заряд ядра увеличивается на единицу, при позитронном, естественно, на столько же уменьшается.

Для более полного понимания бета-распада приходится копнуть еще глубже. Протоны и нейтроны считались истинно элементарными частицами лишь до середины 60-х годов прошлого века. Сейчас мы точно знаем, что те и другие состоят из троек кварков - куда менее массивных частиц, несущих положительные или отрицательные заряды. Заряд отрицательного кварка равен одной трети заряда электрона, а положительного - двум третям заряда протона. Кварки тесно спаяны друг с другом благодаря обмену особыми безмассовыми частицами - глюонами - ив свободном состоянии попросту не существуют. Так что бета-распады - это на самом деле превращения кварков.

Нуклоны внутри ядра связаны опять-таки обменными силами, переносчиками которых служат другие частицы, пионы (раньше их называли пи-мезонами). Эти связи далеко не так прочны, как глюонное склеивание кварков, именно поэтому ядра и могут распадаться. Внутриядерные силы не зависят от наличия или отсутствия заряда (следовательно, все нуклоyы реагируют друг с другом одинаково) и обладают очень коротким радиусом действия, примерно 1,4x10-15 метра. Размеры атомных ядер зависят от числа нуклонов, но в общем такого же порядка. Скажем, радиус самого тяжелого из встречающихся в природе нуклидов, урана-238, равен 7,4x10-15 метра, у более легких ядер он меньше.

ФИЗИКА ПОСЕРЬЕЗНЕЙ
С ядерным ликбезом мы покончили, перейдем к более интересным вещам. Вот для начала несколько фактов, объяснение которых открывает путь к пониманию различных механизмов нуклидного синтеза.

Факт 1.
На Земле обнаружены первые 92 элемента Периодической системы - от водорода до урана (правда, гелий был сначала открыт по спектральным линиям на Солнце, а технеций, астат, прометий и франций - получены искусственно, но позднее все они были обнаружены в земном веществе). Все элементы с большими номерами были получены искусственно, Их принято называть трансурановыми, стоящими в Периодической системе справа от урана.

Факт 3.
Соотношение между числами внутриядерных протонов и нейтронов отнюдь не произвольно. В стабильных легких ядрах их числа одинаковы или почти одинаковы - скажем, у лития 3:3, у углерода 6:6, у кальция 20:20. Но с ростом атомного номера число нейтронов растет быстрее и в самых тяжелых ядрах превышает число протонов примерно в 1,5 раза. Например, ядро стабильного изотопа висмута сложено из 83 протонов и 126 нейтронов (есть еще 13 нестабильных, у которых количество нейтронов варьирует от 119 до 132). У урана и транс-уранов отношение между нейтронами и протонами приближается к 1,6.

Факт 2.
Все элементы имеют нестабильные изотопы, встречающиеся в природе или искусственные. Например, дейтерий стабилен, а вот тритий претерпевает бета-распад, (К слову, сейчас известно около двух тысяч радиоактивных нуклидов, многие из которых применяются в различных технологиях и потому выпускаются в промышленных масштабах.) А вот стабильные изотопы есть только у первых 83 элементов таблицы Менделеева - от водорода до висмута. Девять самых тяжелых природных элементов: полоний, астат, радон, франций, радий, актиний, торий, протактиний и уран - радиоактивны во всех своих изотопных вариантах. Все без исключения трансураны также нестабильны.

Как объяснить эту закономерность? Почему не бывает ядер углерода, скажем, с 16 нейтронами (этот элемент имеет 13 изотопов с числом нейтронов от 2 до 14, однако, помимо основного изотопа, уг-лерода-12, стабилен только углерод-13)? Почему нестабильны все нуклиды с числом протонов свыше 83?

Карта стабильности атомных ядер

Атомная масса возрастает от верхней части карты к нижней. Число протонов увеличивается к нижнему правому углу, число нейтронов – к нижнему левому. Самый нижний красный блок – 112-й элемент.

В учебниках ядерной физики можно найти очень наглядную диаграмму, которую называют картой изотопов или долиной ядерной стабильности. По ее горизонтальной оси отложено число нейтронов, по вертикальной - протонов. Каждому изотопу соответствует определенная точка, скажем, основному изотопу гелия - точка с координатами (2,2). На этой диаграмме хорошо видно, что все реально существующие изотопы сосредоточены на довольно узкой полосе. Сначала ее наклон к оси абсцисс составляет примерно 45 градусов, затем он несколько уменьшается. В центре полосы концентрируются стабильные изотопы, а по бокам - склонные к тем или иным распадам.

Тут-то и возникает неясность. Понятно, что ядра не могут состоять из одних протонов - их разрывали бы силы электрического отталкивания. Но нейтроны вроде бы должны увеличивать межпротонные дистанции и тем самым это отталкивание ослаблять. А ядерные силы, которые объединяют нуклоны в ядре, как уже говорилось, действуют одинаково и на протоны, и на нейтроны. Казалось бы, чем больше в ядре нейтронов, тем оно стабильней. И если это не так, то почему?

Вот объяснение «на пальцах». Ядерная материя подчиняется законам квантовой механики. Нуклоны обоих видов имеют полуцелый спин, а потому, как и все прочие такие частицы (фермионы), подчиняются принципу Паули, который запрещает одинаковым фермионам занимать одно и то же квантовое состояние. Это означает, что количество фермионов данного вида в определенном состоянии может выражаться лишь двумя числами - 0 (состояние не занято) и 1 (состояние заполнено).

В квантовой механике, в отличие от классической, все состояния дискретны. Ядро не разваливается потому, что нуклоны в нем стянуты воедино ядерными силами. Это можно наглядно представить такой картинкой - частицы сидят в колодце и просто так оттуда выскочить не могут. Физики тоже пользуются этой моделью, называя колодец потенциальной ямой. Протоны и нейтроны не одинаковы, поэтому рассаживаются в двух ямах, а не в одной. И в протонной, и в нейтронной яме имеется набор уровней энергии, которые могут занимать провалившиеся в нее частицы. Глубина каждой ямы зависит от усредненного силового взаимодействия между ее пленниками.

Теперь вспомним, что протоны взаимно отталкиваются, а нейтроны - нет. Следовательно, протоны спаяны слабее, нежели нейтроны, поэтому их потенциальная яма не так глубока. Для легких ядер это различие невелико, однако оно нарастает по мере увеличения заряда ядра. А вот энергии самых верхних непустых уровней в обеих ямах должны совпадать. Если бы верхний заполненный нейтронный уровень был выше верхнего протонного, ядро могло бы снизить свою суммарную энергию, «вынудив» занимающий его нейтрон претерпеть бета-распад и превратиться в протон. А коль скоро такое превращение было бы энергетически выгодным, оно бы со временем случилось, ядро оказалось бы нестабильным. Тот же самый финал имел бы место, если бы какой-то протон посмел превысить свой энергетический масштаб.

Вот мы и нашли объяснение. Если протонная и нейтронная ямы обладают почти равной глубиной, что характерно для легких ядер, то числа протонов и нейтронов тоже оказываются примерно одинаковыми. По мере движения вдоль таблицы Менделеева число протонов нарастает, и глубина их потенциальной ямы все более отстает от глубины нейтронного колодца. Поэтому тяжелые ядра должны иметь в своем составе больше нейтронов, нежели протонов. А вот если искусственно сделать эту разницу слишком большой (скажем, бомбардируя ядро медленными нейтронами, которые не разбивают его на осколки, а просто «приклеиваются), нейтронный уровень сильно поднимется над протонным, и ядро распадется. Эта схема, конечно, предельно упрощена, но в принципе правильна.

Пойдем дальше. Коль скоро по мере увеличения атомного номера наблюдается прогрессирующее превышение числа нейтронов над протонами, которое снижает стабильность ядер, все тяжелые нуклиды обязаны быть радиоактивными. Это и в самом деле так, не будем повторять наш Факт 2. Более того, вроде бы мы вправе предположить, что тяжелеющие нуклиды будут становиться все менее стабильными, иначе говоря, продолжительность их жизни будет постоянно снижаться. Этот вывод выглядит абсолютно логичным, но он неверен.

ЗАВЕТНЫЙ ОСТРОВ
Начнем с того, что описанная выше схема многого не учитывает. Например, имеется так называемый эффект нуклонного спаривания. Он состоит в том, что два протона или два нейтрона могут вступить в тесный союз, образовав внутри ядра полуавтотомное состояние с нулевым угловым моментом. Члены таких пар сильнее притягиваются друг к другу, что повышает устойчивость всего ядра. Именно поэтому при прочих равных условиях наибольшую стабильность проявляют ядра с четными числами протонов и нейтронов, а наименьшую - с нечетными. Стабильность ядер зависит и от ряда других обстоятельств, слишком специальных, чтобы их здесь обсуждать.

Но главное даже не в этом. Ядро - это не просто гомогенное скопление нуклонов, хотя бы и спаренных. Многочисленные эксперименты уже давно убедили физиков, что ядро, скорее всего, обладает слоистой структурой. Согласно этой модели, внутри ядер существуют протонные и нейтронные оболочки, которые в чем-то похожи на электронные оболочки атомов. Ядра с полностью заполненными оболочками особенно устойчивы по отношению к спонтанным превращениям. Числа нейтронов и протонов, соответствующих полностью заполненным оболочкам, называются магическими. Некоторые из таких чисел надежно определены в экспериментах - это, например, 2, 8 и 20.

И вот здесь-то начинается самое интересное. Оболочечные модели позволяют вычислять магические числа сверхтяжелых ядер - правда, без полной гарантии. Во всяком случае есть все основания ожидать, что нейтронное число 184 окажется магическим. Ему могут соответствовать протонные числа 114, 120 и 126, причем последнее опять-таки должно быть магическим. Следовательно, можно предполагать, что изотопы 114-го, 120-го и 126-го элементов, содержащие по 184 нейтрона, будут жить куда дольше своих соседей. Особые надежды возлагаются на последний изотоп, поскольку он оказывается дважды магическим. Согласно наимено-вочной конвенции, о которой говорилось в первом разделе, его надо называть унбигексий-310.

Итак, можно надеяться, что существуют еще не открытые сверхтяжелые нуклиды, которые живут очень долго, во всяком случае, по меркам своего ближайшего окружения. Физики называют это гипотетическое семейство «островом стабильности». Гипотезу о его существовании впервые высказал замечательный американский физик-ядерщик (или, если угодно, химик-ядерщик) Гленн Сиборг, Нобелевский лауреат 1951 года. Он был руководителем или ключевым членом команд, создавших все девять элементов от 94-го (плутоний) до 102-го (нобелий), а также 106-й элемент, названный в его честь сиборгием.
Теперь можно ответить и на вопрос, которым заканчивается первый раздел. Синтез сверхтяжелых элементов, помимо всего прочего, шаг за шагом приближает физиков-ядерщиков к их святому Граалю - острову ядерной стабильности. Никто не может с уверенностью сказать, достижима ли эта цель, однако открытие заветного острова стало бы великим успехом науки.

114 элемент уже создан – это унунквадий. Сейчас он синтезирован в пяти изотопных версиях с числом нейтронов от 171 до 175. Как видим, до 184 нейтронов еще далеко. Однако самые стабильные изотопы унунквадия имеют период полураспада чуть меньше 3 секунд. Для 113-го элемента этот показатель составляет около половины секунды, для 115-го – менее одной десятой. Это обнадеживает.

Ускоритель У-400 в Объединенном институте ядерных исследований (Дубна),

на котором был получен 118-й элемент

СИНТЕЗ 118-ГО
Все искусственные элементы с 93-го до сотого были | впервые получены [ при облучении ядер | нейтронами или ядрами дейтерия ] (дейтонами). Это не 1 всегда происходило в лаборатории. Элементы 99 и 100 - эйнштейний и фермий - были впервые идентифицированы при радиохимическом анализе проб вещества, собранных в районе тихоокеанского атолла Эниветок, где 1 ноября 1952 года американцы взорвали десятимегатонный термоядерный заряд «Майк». Его оболочка была изготовлена из урана-238. Во время взрыва урановые ядра успевали поглотить до пятнадцати нейтронов, а затем претерпевали цепочки бета-распадов, которые в конечном счете и приводили к образованию изотопов этих двух элементов. Кстати, некоторые из них живут довольно долго - так, период полураспада эйнштейния-254 составляет 480 суток.

Трансфермиевые элементы с номерами более 100 синтезируются посредством бомбардировки массивных, но не слишком быстро распадающихся нуклидов тяжелыми ионами, разогнанными в специальных ускорителях. Среди лучших в мире машин этого рода - циклотроны У-400 и У-400М, принадлежащие Лаборатории ядерных реакций имени Г. М. Флерова Объединенного института ядерных исследований. На ускорителе У-400 и был синтезирован 118-й элемент, унуноктий. В таблице Менделеева он расположен в точности под радоном и, значит, должен быть благородным газом.
Впрочем, об исследовании химических свойств унуноктия говорить еще рано. В 2002 году было получено лишь одно ядро его изотопа с атомным весом 294 (118 протонов, 176 нейтронов), в 2005-м - еще два. Жили они недолго - около миллисекунды. Их изготовили посредством бомбардировки мишени из калифор-ния-249 ускоренными ионами кальция-48. Общее число кальциевых «пулек» составило 2x1019! Так что производительность унуноктиевого генератора крайне мала. Впрочем, это типичная ситуация. Зато объявленные результаты считаются вполне надежными, вероятность ошибки не превышает тысячной доли процента.

Ядра унуноктия претерпевали серию альфа-распадов, последовательно превращаясь в изотопы 116-го, 114-го и 112-го элементов. Последний, уже упоминавшийся унунбий, живет очень недолго и делится на тяжелые осколки примерно одинаковой массы.

Вот пока что и вся история. В 2007 году те же экспериментаторы надеются изготовить ядра 120-го элемента, бомбардируя плутониевую мишень ионами железа. Штурм острова стабильности продолжается.

Что нового в науке и технике, № 1, 2007